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We present a Vlasov–DArwin numerical code (ViDA) specifically designed to
address plasma physics problems, where small-scale high accuracy is requested
even during the nonlinear regime to guarantee a clean description of the plasma
dynamics at fine spatial scales. The algorithm provides a low-noise description of
proton and electron kinetic dynamics, by splitting in time the multi-advection Vlasov
equation in phase space. Maxwell equations for the electric and magnetic fields are
reorganized according to the Darwin approximation to remove light waves. Several
numerical tests show that ViDA successfully reproduces the propagation of linear and
nonlinear waves and captures the physics of magnetic reconnection. We also discuss
preliminary tests of the parallelization algorithm efficiency, performed at CINECA
on the Marconi-KNL cluster. ViDA will allow the running of Eulerian simulations
of a non-relativistic fully kinetic collisionless plasma and it is expected to provide
relevant insights into important problems of plasma astrophysics such as, for instance,
the development of the turbulent cascade at electron scales and the structure and
dynamics of electron-scale magnetic reconnection, such as the electron diffusion
region.
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1. Introduction
Despite being studied with great effort for approximately a century, natural

and laboratory plasmas exhibit several complex phenomena that still need to be
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2 O. Pezzi and others

understood, mainly because of the strongly nonlinear interactions and the presence
of kinetic effects. In this context, investigating plasma dynamics is decisive for
understanding fundamental processes occurring in different systems, ranging from
very-far astrophysical objects to the near-Earth environment and laboratory fusion
devices. These systems routinely present a strongly nonlinear dynamics, which
develops on a large range of spatial and time scales, including the ones associated
with kinetic processes. In such systems, energy is typically injected at large fluid
scales and cascades towards smaller scales, driving the system to cross three different
physical regimes, ranging from fluid (magnetohydrodynamics, Hall-MHD) to ion
kinetic and eventually to electron kinetic scales. This multi-scale physics is the direct
consequence of the weak plasma collisionality, that characterizes solar-wind and
astrophysical plasmas (Kulsrud 2005; Califano & Mangeney 2008; Bruno & Carbone
2016) as well as fusion device dynamics, where collisions can become effective at
scales smaller than the electron kinetic scales (Falchetto et al. 2008).

As a result, the plasma is allowed to freely access the entire phase space and to
manifest dynamical states far from thermal equilibrium (Galeotti & Califano 2005;
Valentini et al. 2005; Marsch 2006; Franci et al. 2015; Servidio et al. 2015, 2017;
Cerri, Kunz & Califano 2018; Franci et al. 2018; Pezzi et al. 2018; Sorriso-Valvo
et al. 2018b, 2019). As an example, we highlight here the fundamental role of the
collisionless magnetic reconnection, that – even within a fluid theory framework
– drives a strongly nonlinear dynamics (at both ion and electron scales), without
collisions being relevant (Califano, Faganello & Pegoraro 2007). Within this context,
the Vlasov equation for each particle species, self-consistently coupled to Maxwell
equations for the fields, provides a complete description of the system dynamics,
although in some cases the role of weak collisions should be also considered (Navarro
et al. 2016; Pezzi, Valentini & Veltri 2016; Pezzi et al. 2019). The Vlasov–Maxwell
model is an nonlinear integro-differential set of equations in multi-dimensional phase
space, whose analytic solutions are only available in a few simplified cases and in
a reduced phase-space geometry. A numerical approach is therefore mandatory to
describe the dynamics of collisionless magnetized plasmas in the fully nonlinear
regime.

As of today, numerical simulations have provided significant insights into the
plasma dynamics at proton and sub-proton spatial scales, where proton kinetic effects
are dominant, while electrons can be approximated as an isothermal fluid (hybrid
framework) (Valentini et al. 2007). In this range of scales, both particle-in-cell
(PIC) and Eulerian hybrid codes have been extensively employed to investigate in
detail a variety of physical phenomena such as, for instance, the development of
the intermittent cascade of turbulent fluctuations (Parashar et al. 2009; Valentini,
Califano & Veltri 2010; Servidio et al. 2012; Franci et al. 2015; Servidio et al. 2015;
Franci et al. 2016; Valentini et al. 2016; Cerri & Califano 2017; Cerri, Servidio &
Califano 2017; Valentini et al. 2017; Pezzi et al. 2017a,b; Cerri et al. 2018; Franci
et al. 2018; Perrone et al. 2018; Sorriso-Valvo et al. 2018a), the dynamo effect in
turbulent plasmas (Rincon et al. 2016), the interaction of solar wind and the Earth’s
magnetosphere at global scales (Kempf et al. 2013; Palmroth et al. 2013; Pokhotelov
et al. 2013; Von Alfthan et al. 2014; Hoilijoki et al. 2016; Palmroth et al. 2018;
Pfau-Kempf et al. 2018) and the dynamics of magnetic reconnection (Birn et al. 2001;
Shay et al. 2001; Pritchett 2008; Califano et al. 2018). To reduce the computational
cost of the simulation, reduced models – such as the gyro-kinetic (Howes et al. 2006,
2008a,b; Schekochihin et al. 2008; Tatsuno et al. 2009; Howes et al. 2011; TenBarge,
Howes & Dorland 2013; Told et al. 2015; Howes 2016) or the finite Larmor radius
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ViDA: a Vlasov–DArwin solver for plasma physics at electron scales 3

Landau fluid ones (Passot & Sulem 2007; Sulem & Passot 2015; Sulem et al. 2016;
Kobayashi et al. 2017) – have been also widely adopted to describe plasma dynamics
at kinetic scales.

Within the context of space plasmas, recent high-resolution observations conducted
by the magnetospheric multi-scale (MMS) mission (Burch et al. 2016a; Fuselier
et al. 2016) allowed us, for the first time, to investigate the plasma dynamics at the
electron scale. The MMS mission focuses primarily on kinetic processes occurring in
the electron diffusion region of magnetic reconnection (Burch et al. 2016b; Torbert
et al. 2016, 2018) and its unprecedented high-resolution observations confirm a
very complex picture where several mechanisms can be at work in producing
small-scale fluctuations (Le Contel et al. 2016; Breuillard et al. 2018; Chasapis
et al. 2018). Magnetic reconnection often takes place within a turbulent environment
where coherent structures – such as current sheets and X-points – naturally develop
(Retinò et al. 2007; Servidio et al. 2009, 2010; Haggerty et al. 2017; Phan et al.
2018). At the same time, plasma jets generated by magnetic reconnection can provide
energy for sustaining the turbulence itself (Cerri et al. 2017; Pucci et al. 2017, 2018).
Reconnection is important for space and astrophysical plasmas as it is responsible for
major plasma heating and particle acceleration in solar and stellar coronae, magnetars,
accretion disks and astrophysical jets (Lyutikov 2003; Uzdensky 2011) as well as for
tokamaks, being a major cause of loss of plasma confinement and plasma heating
(Helander, Eriksson & Andersson 2002; Tanabe et al. 2015).

In order to properly combine and compare the experimental evidence at electron
scales with theoretical investigations (Hesse et al. 2016), a huge numerical effort
needs still to be made. To this end, only few numerical algorithms which retain both
proton and electron kinetic physics are nowadays available. Most of them are PIC
codes (Zeiler et al. 2002; Markidis, Lapenta & Rizwan-uddin 2010; Camporeale &
Burgess 2011; Daughton et al. 2011; Karimabadi et al. 2013; Leonardis et al. 2013;
Divin et al. 2015; Lapenta et al. 2015; Wan et al. 2015; Grošelj et al. 2017; Yang
et al. 2017; Parashar, Matthaeus & Shay 2018; Shay et al. 2018; González et al. 2019;
Lapenta et al. 2019), which capture the full dynamics (including electron scales) since
their computational cost is smaller with respect to low-noise Eulerian (Vlasov) codes.
However, at variance with noise-free Eulerian algorithms, PIC codes fail in providing
a clean description of small-scale fluctuations (e.g. the electric-field behaviour around
the X-point) and particle distribution functions in phase space, since they suffer from
intrinsic statistical noise. Only very recently the first attempts to describe the plasma
dynamics via Eulerian fully kinetic codes have become affordable, thanks to the
improved supercomputer capabilities (Schmitz & Grauer 2006a; Umeda, Togano &
Ogino 2009; Umeda et al. 2010; Delzanno 2015; Tronci & Camporeale 2015; Umeda
& Wada 2016; Ghizzo, Sarrat & Del Sarto 2017; Umeda & Wada 2017; Juno et al.
2018; Roytershteyn et al. 2019; Skoutnev et al. 2019). As stated above, Eulerian
algorithms generally require a computational cost significantly large as compared
to PIC codes. A way to reduce the computational cost of a fully kinetic Eulerian
simulation consists of applying the so-called Darwin approximation (Kaufman &
Rostler 1971; Birdsall & Langdon 2004; Schmitz & Grauer 2006a,b) to the Maxwell
equations based on the expansion of the Maxwell system in the small parameter
v2/c2 (Mangeney et al. 2002) (v being the typical plasma bulk speed). Within this
approximation, all wave modes (including those triggered by charge separation) are
retained except for light waves (vφ ∼ c, vφ being the wave phase speed); by doing so,
the numerical stability condition for the time step can be significantly relaxed.

In the present work we present a newly developed fully kinetic Eulerian Vlasov–
DArwin algorithm (ViDA) which integrates numerically the kinetic equations for a
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4 O. Pezzi and others

non-relativistic globally neutral plasma composed of protons and electrons. Equations
are discretized on a fixed-in-time grid in phase space with periodic boundary
conditions in the physical domain. ViDA originates from the hybrid Vlasov–Maxwell
code (Valentini et al. 2007) (hereafter referred to as the HVM code) and has been
extended specifically to include electron kinetic dynamics. The paper is organized
as follows. In § 2 we revisit the Darwin approximation and describe the system
of equations that is numerically integrated through ViDA. We discuss in detail the
strategy of the numerical integration of the Vlasov equation for each species and
we show that the Darwin version of the Maxwell equations can be written as a set
of Helmholtz and Poisson-like equations, solvable through a spectral method. In the
same section, we also provide a description of the algorithm design. Then, in § 3 we
present the first results obtained through this algorithm, concerning the propagation
of (i) electrostatic Langmuir waves, (ii) whistler waves and (iii) Alfvén waves. In § 4,
we describe the onset of the electron Weibel instability which is a plasma instability
driven by the presence of an electron temperature anisotropy (Weibel 1959). In § 5
we present preliminary results concerning one of the main potential applications of
ViDA: the magnetic reconnection process at electron scales. Then, in § 6, we discuss
the performance of the algorithm. Finally, we conclude and summarize in § 7.

2. The Vlasov–Darwin (VD) model
The Darwin approximation, that we briefly revisit in the current section, has

been adopted to reduce the limitations on the time steps for numerical integration
(Kaufman & Rostler 1971; Mangeney et al. 2002; Birdsall & Langdon 2004; Schmitz
& Grauer 2006a). Indeed, since Maxwell equations allow for the propagation of
waves at the light speed c, the time step 1t of any explicit numerical scheme solving
these equations would be limited by the Courant–Friedrichs–Lewy (CFL) condition,
1t . 1x/c (Peyret & Taylor 1986). The Darwin approximation, by dropping the
transverse displacement current term, rules out the transverse light waves (i.e. the
fastest waves in the system that propagate at phase speed c) and significantly relaxes
the CFL condition.

We consider a non-relativistic, collisionless, fully kinetic plasma composed of
electrons and protons. The Vlasov–Darwin system of equations reads (in CGS units),

∂t fα + v · ∇fα +
Zαe
mα

(
E+

v

c
×B

)
· ∇vfα = 0, (2.1)

∇ ·EL = 4πρc, (2.2)
∇ ·B= 0, (2.3)

∇×ET =−
1
c
∂tB, (2.4)

∇×B=
1
c
∂tEL +

4π

c
j, (2.5)

where fα(x,v, t) is the distribution function (DF) of the α=p, e species, mα and Zα are
respectively the mass and charge number of the α species and c is the light speed; ∂t,
∇ and ∇v indicate the derivatives with respect to the time t, the spatial coordinates x
and the velocity coordinates v, respectively; E(x, t)=EL(x, t)+ET(x, t) and B(x, t) are
the electric and magnetic field, respectively. The electric field has been decomposed
into a longitudinal (irrotational, ∇×EL = 0) and a transverse (solenoidal, ∇ ·ET = 0)
component (Griffiths 1962). According to the Darwin approximation, the transverse
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ViDA: a Vlasov–DArwin solver for plasma physics at electron scales 5

component of the displacement current has been neglected in Ampere’s law (2.5)
(Birdsall & Langdon 2004; Schmitz & Grauer 2006a). The Darwin model, that
retains at least the longitudinal component of the displacement current, is generally
closer to the full Maxwell system with respect to models where the displacement
current is completely neglected (Valentini et al. 2007; Tronci & Camporeale 2015).

The plasma charge density ρc(x, t) and the current density j(x, t) are defined through
the first two velocity moments of the particle DFs,

ρc = e
∑
α

Zαnα = e
∑
α

Zα

∫
dv fα, (2.6)

j=
∑
α

jα = e
∑
α

ZαnαVα = e
∑
α

Zα

∫
dvv fα. (2.7)

Equations (2.1)–(2.5) can be further simplified to obtain a set of Helmholtz-like
equations of state without explicit time derivatives (see Birdsall & Langdon (2004) and
Schmitz & Grauer (2006a) for details). By normalizing equations using a characteristic
length L̄, time t̄, velocity Ū= L̄/t̄, mass m̄ and distribution function fα,0= n̄/Ū3 (with
n̄= L̄−3 the equilibrium density), it is straightforward to get the dimensionless Vlasov–
Darwin system of equations,

∂t fα + (v · ∇) fα +
Zα
µα
(E+ v×B) · ∇v fα = 0, (2.8)

∇
2ϕ =−ζ 2

∑
Zαnα, EL =−∇φ, (2.9a,b)

∇
2B=−ū2ζ 2

∇× j, (2.10)

∇
2ÊT − ū2ζ 2

∑
α

Z2
αnα,0
µα

ÊT = ū2ζ 2

[
−∇ ·

∑
α

Zα〈vv〉α +
∑
α

Z2
α

µα
(nαEL + 〈v〉α ×B)

]
,

(2.11)

∇
2Θ =∇ · ÊT, ET = ÊT −∇Θ, (2.12a,b)

∇ ·B= 0, (2.13)

where 〈h〉α=
∫

dvfαh. In (2.8)–(2.13), the electric and magnetic fields are normalized to
Ē= m̄Ū/et̄ and B̄= m̄c/et̄, respectively. Note also that we set kB= 1. Non-dimensional
parameters are µα = mα/m̄, ū = Ū/c and ζ = ω̄p t̄, with ω̄p =

√
4πe2n̄/m̄. Note that

in (2.11) we have omitted a term ū2∇∂ttφ which could generate, in principle, an
irrotational component, and we have introduced (2.12a,b) to preserve the solenoidality
of ET (Schmitz & Grauer 2006a). The spatial dependence of nα on the left-hand side
of (2.11) has been neglected (nα ' nα,0) to let the coefficients be constant (Valentini
et al. 2007).

2.1. Conservation properties

It is straightforward to verify that (2.8)–(2.13) satisfy mass
∫

dx dv fα and entropy
Sα =

∫
dx dv fα log fα conservation. The energy conservation equation, obtained by
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6 O. Pezzi and others

multiplying (2.8) by mαv
2/2, integrating over the phase-space volume

∫
dx dv and

summing over the species reads,

Ekin + Eth + Emag + Eel = const., (2.14)

where the kinetic energy is Ekin =
∑

α(mα/2)
∫

dxnαu2
α, the thermal energy is

Eth =
∑

α(3/2)
∫

dxnαTα, the magnetic energy is Emag =
∑

α(m̄/2ū2ζ 2)
∫

dxB2 and
the electrostatic energy is Eel =

∑
α(m̄/2ζ

2)
∫

dxE2
L. Note that the temperature of the

α-species is defined as 3nαTα/mα =
∫

dv(v − uα)2fα and, to get (2.14), we have
used

∫
dxwT · wL = 0, wT and wL being a generic transverse and longitudinal vector,

respectively. In each of the tests described in the present work we have checked the
conservation of these quantities: their variation with respect to initial values is always
smaller than the 1 %.

2.2. ViDA algorithm and code design
The Vlasov equation for each species is integrated numerically by employing the time
splitting method first proposed by Cheng & Knorr (1976) in the electrostatic limit
and later extended to the full electromagnetic case (Mangeney et al. 2002). Darwin
equations are solved through standard fast Fourier transform (FFT) algorithms.

In our case, the splitting algorithm for (2.8) reads as follows:

∂t fα + (v · ∇) fα = 0 (2.15)

∂t fα +
Zα
µα
(E+ v×B) · ∇v fα = 0. (2.16)

In the first equation v is a parameter, while in the second equation x, E and B are
parameters. At time t, the solutions of (2.15)–(2.16) can be written as Λx(t)Fα(x, v)
and ΛvFα(x, v), respectively. In last expressions, Λx and Λv are the advection
operators in physical and velocity space, whose explicit definition, based on the
third-order van Leer scheme, can be found in Mangeney et al. (2002); while
Fα(x, v) = fα(x, v, t = 0) is the initial condition. Note that Λv depends also on
the particle species α and, for the sake of simplicity, we avoid to explicitly report
such dependence.

The splitting scheme is a symplectic, second order accurate in time (see Mangeney
et al. (2002) where the stability condition of the advection operator is also discussed)
and the numerical solution at t= tN =N1t is given by,

fα(x, v, tN)=

[
Λx

(
1t
2

)
Λv(1t)Λx

(
1t
2

)]N

fα(x, v, 0). (2.17)

At t = 0, the distribution function Fα(x, v) = fα(x, v, t = 0) is first advected in
physical space by half of a time step, obtaining f̃α(x, v, 1t/2). Then, the following
structure is executed:

(i) computing the moments of f̃α and evaluating the electromagnetic fields EL, ET

and B, at t=1t/2, through (2.9a,b)–(2.13);
(ii) performing a time-step advection in velocity space: f̂α =Λv(1t)f̃α;

(iii) performing a time-step advection in physical space: f̃α =Λx(1t)f̂α.
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ViDA: a Vlasov–DArwin solver for plasma physics at electron scales 7

This last structure is repeated in the algorithm, according to (2.17), in order to get
the evolved distribution function at any time instant.

The phase-space domain is discretized as follows. The physical space Dx = [0, Lx]

×[0, Ly] × [0, Lz] is discretized with Nx × Ny × Nz gridpoints and periodic boundary
conditions are used. The velocity space Dv,α = [−v

max
α,x , v

max
α,x ] × [v

max
α,y , v

max
α,y ] ×

[−vmax
α,z , v

max
α,z ] is discretized by (2Nα,vx + 1) × (2Nα,vy + 1) × (2Nα,vz + 1) grid points.

Velocity-space boundary conditions impose fα(|vi|> v
max
α,i )= 0 (i= x, y, z). In order to

ensure mass conservation, vmax
α,i is typically set to be a large multiple of the thermal

speed vth,α =
√

Tα/mα.
The ViDA algorithm has been designed in such a way that the user can

select (i) different normalizations of the model equations, (ii) the possibility of
setting motionless protons and (iii) different dimensionalities of the physical-space
domain (one, two or three dimensions), the velocity-space domain being always
three-dimensional (3V). Within ViDA spatial vectors always have three components
and can be function of one, two or three spatial variables, depending on the
physical-space dimensionality. Since Darwin equations are a set of Helmholtz-like
equations, initial perturbations have to be introduced through the particle DFs (and
their moments): this represents a difference with respect to standard codes where also
magnetic perturbations can be introduced. A check on the solenoidality of B and ET

is also implemented at each time step.
The computational effort necessary to solve VD equations is significant and a

massive parallelization, based on both MPI and OpenMP paradigms is implemented.
The MPI paradigm, first introduced for the DF by Mangeney et al. (2002), is adopted
to parallelize the physical-space computational domain for both particle DFs (and
their moments) and electromagnetic field. Hence each MPI thread accesses a finite
portion of phase space, composed by a sub-portion of physical space and by the
whole velocity space. Within each MPI thread, the OpenMP directives are adopted to
parallelize the velocity-space cycles. The parallelization of the electromagnetic field is
a new feature recently introduced in the HVM code in Cerri & Califano (2017) and
it is essential to perform high-resolution Eulerian Vlasov simulations, in particular in
three dimensions. Preliminary tests on performance and scalability are reported in § 6.

2.3. Normalizations of the Vlasov–Darwin equations
In order to normalize (2.8)–(2.13), three possible choices have been implemented in
ViDA:

(i) Electrostatic normalization. Characteristic quantities are: length L̄ = λD,e, time
t̄ = ω−1

p,e, velocity Ū = vth,e and mass m̄ = me. Here λD,e =
√

Te/4πnee2,
ωp,e = (

√
4πnee2/me)

−1, vth,e =
√

Te/me = λD,eωp,e and me are the electron
Debye length, the electron plasma frequency, the electron thermal speed and
the electron mass, respectively. This normalization is appropriate for describing
phenomena occurring at electron scales, such as the propagation of electrostatic
plasma waves.

(ii) Electromagnetic normalization. Characteristic quantities are: length L̄ = de, time
t̄ = ω−1

p,e, velocity Ū = c and mass m̄ = me, where de = c/ωp,e is the electron
skin depth. This normalization can be adopted for describing electromagnetic
phenomena, where both protons and electrons are involved, such as magnetic
reconnection and plasma turbulence at kinetic scales.
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8 O. Pezzi and others

(iii) Hybrid normalization. Characteristic quantities are: length L̄= dp, time t̄ =Ω−1
c,p ,

velocity Ū = vA and mass m̄ = mp. In previous expressions Ωcp = eB0/mpc,
vA = B0/

√
4πnpmp, dp = vA/Ωcp and mp are the proton cyclotron frequency, the

proton Alfvén speed, the proton skin depth and the proton mass, respectively.
This normalization is useful for investigating the turbulent cascade in the
sub-proton range, where electron physics starts to play a role.

These three normalizations can be adopted to describe, in a more natural way (i.e.
characteristic scales close to unity), phenomena where electrostatic, electromagnetic
or proton inertial effects dominate, respectively.

3. Numerical tests of ViDA

In this section we report the results of several tests performed to evaluate the
capabilities of ViDA in describing basic collisionless plasma physics dynamics. The
proper behaviour and reliability of the code have been tested against the propagation
of Langmuir waves, in both linear and nonlinear regimes, whistler waves and Alfvén
waves.

3.1. Propagation and damping of Langmuir waves
For these tests we adopted the electrostatic normalization. We discuss results of
simulations performed with motionless protons in 1D–3V phase-space configuration,
where Langmuir waves propagate along the x direction. Physical and velocity
space have been discretized with Nx = 128 and Ne,vx = 50, Ne,vy = Ne,vz = 15 grid
points, respectively. In the case of mobile protons (mp/me = 1836 and Tp/Te = 1),
the propagation of Langmuir waves has been reproduced with lower phase-space
resolution, but the results are quantitatively similar to those discussed in the following.
We have also separately tested the propagation of Langmuir waves along y and z
directions by carrying out 2D–3V and 3D–3V runs.

The initial equilibrium is given by an electron Maxwellian distribution spatially
homogeneous. The plasma is unmagnetized, the initial electron temperature is Te = 1
(in scaled units). At t = 0, the electron number density is perturbed through a
sinusoidal perturbation δne/ne,0 = A sin(kx), A = 10−4 and k = k1 = 2π/L being the
amplitude and the wavenumber, respectively. The box length is L= 18λD,e (k1= 0.35)
and vmax

e,i = 5vth,e (i= x, y, z). The system evolution is reproduced up to a maximum
time tmax = 100ω−1

p,e, while the numerical recurrence time is trec = 2π/k1v ' 180ω−1
p,e

(Cheng & Knorr 1976; Galeotti, Califano & Pegoraro 2006; Pezzi et al. 2016).
Figure 1(a) shows the time evolution of the amplitude of the kx = k1 Fourier

component of the electric field |Ex|(k1, t), in a semi-logarithmic plot. The electric
field undergoes Landau damping (Landau 1946); the observed damping rate shows a
very good agreement with the theoretical prediction γL=−3.37× 10−2ωp,e (red-dashed
line), evaluated through a numerical linear solver for the roots of the electrostatic
Vlasov dielectric function. In figure 1(b) we report the resonant curve, obtained by
Fourier transforming the electric signal in space and time; we plot the spectral electric
energy |Ex|

2(k1, ωR) as a function of the pulsation ωR. As expected, the resonant curve
displays a well-defined frequency peak in correspondence of a value of the pulsation
ωR = 1.22ωp,e. In figure 1(b), the vertical red-dashed line represents the value of the
theoretical resonant pulsation ωR,th obtained through the linear solver, while the two
vertical red-dot-dashed lines indicate the interval of uncertainty of the numerical code,
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(a) (b)

FIGURE 1. (a) Time evolution of |Ex|(k1, t). The red dashed line indicates the predicted
Landau damping rate γL. (b) Energy peak |Ex|

2(k1, ωR) as a function of the pulsation ωR.
The red dashed line indicates the theoretical wave frequency ωR,th, while red dot-dashed
lines show the ωR – resolution, i.e. ωR,th ± 1ωR/2. The theoretical expectations for the
Langmuir wave damping and the pulsation have been obtained with a numerical solver of
the linear dispersion relation.

(a) (b)

FIGURE 2. Pulsation ωR (a) and damping rate γI (b), in units of ωp,e, from the simulation
(black dots) and from the linear numerical solver (red dashed line) as a function of the
wavenumber kλD,e.

due to the time discretization 1ωR = 2π/tmax ' 0.063ωp,e. Again, numerical results
are in very good agreement with theoretical predictions.

In order to show the dependence of the real ωR and imaginary ωI parts of the
frequency as a function of the wavenumber, we have performed an additional 1D–3V
run, in which the initial perturbation is a superposition of the first six wavenumbers
kx=[k1,6k1], where k1=2π/L (L=2π10λD,e); the other parameters are the same as in
the previous run. To avoid numerical recurrence, phase space has been discretized with
Nx = 128, Ne,vx = 100 and Ne,vy =Ne,vz = 15. Figure 2 reports by stars the dependence
of ωR (a) and ωI (b), in units of ωpe, as a function of the wavenumber kλD,e. A very
good agreement with theoretical expectations (red-dashed curves) is recovered for both
real and imaginary parts of the complex frequency.

We conclude this section by focusing on the nonlinear regime of the Langmuir
wave dynamics (see, for example, Brunetti, Califano & Pegoraro (2000) and references
therein). We have performed ten different runs, varying the amplitude of the initial
density perturbation in the range A= [8× 10−3, 8× 10−2

]. In this case, phase space
has been discretized with Nx = 128, Ne,vx = 150 and Ne,vy = Ne,vz = 15, while tmax =

400ω−1
pe . The box length is Lx = 18λD,e, while vmax

e,i = 5vth,e (i = x, y, z). As reported
in figure 3(a), the time evolution of the electric-field Fourier component shows an
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(a) (b) (c)

FIGURE 3. (a) Time evolution of |Ex(k1, t)| for the simulation with A = 8 × 10−2.
(b) Contour plot of f̃e(x, vx) =

∫
dvy dvz fe(x, v) in the plan x–vx. (c) Nonlinear time τnl

as a function of the first peak amplitude A1. The red line reports the predicted scaling
∼−0.5 (the result of the linear fit is ∼−0.48).

early linear damping phase (Landau 1946), until particle trapping arrests the damping
and produces oscillations of the signal envelope (O’Neil 1965). At large times, a
phase-space vortex is observed in the electron DF in the vicinity of the wave phase
speed, as reported in figure 3(b). As it has been shown in O’Neil (1965), the nonlinear
trapping time τnl depends on the saturation amplitude A1 of the electric oscillations as
τnl∼A−1/2

1 . For each of the ten simulations, we evaluated A1 and τnl at the time of the
first peak of the electric envelope oscillations. Figure 3(c) shows in log–log plot τnl
as a function of A1 (stars), compared to the theoretical expectation (red line), showing
a very nice agreement.

3.2. Propagation of whistler waves
To reproduce the propagation of whistler waves at electron scales, the electromagnetic
normalization has been employed. Protons are assumed just as a fixed neutralizing
background. Again, we have verified that the ViDA code behaves exactly in the
same manner in the three spatial directions. Hence, we discuss here the result of a
1D–3V run, where B0 = B0ex (B0 = 1) and protons are not fixed. The box length is
Lx= 2π10de, while vmax

e,i = 10vth,e and vmax
p,i = 7vth,p (i= x, y, z). Note that increasing the

value of vmax
p(e) has been necessary to ensure mass conservation. The phase space has

been discretized with Nx = 128, Ne,vx =Ne,vy =Ne,vz = 50 and Np,vx =Np,vy =Np,vz = 35.
We also set mp/me = 1836, Te/Tp = 1, ū= vth,e/c= 10−3 and ζ = 1.

The equilibrium is composed of Maxwellian velocity distributions for both protons
and electrons and homogeneous density. The initial equilibrium is then perturbed with
the following electron bulk-speed perturbations:

δue,y = A sin(kx), (3.1)
δue,z = A cos(kx), (3.2)

where A= 10−3 and k= k1 = 2π/Lx.
By solving the Darwin equations, these perturbations generate a current density and

then magnetic fluctuations. Figure 4 reports the time evolution of |By|(k1, t) (a) and
the frequency peak of the spectral magnetic energy |By|

2(k1, ωR) as a function of the
pulsation ωR (b). The magnetic field clearly oscillates at the correct frequency ωR,th=

0.91ωp,e, that can be evaluated from the linear dispersion relation for whistler waves
(obtained by assuming motionless protons and cold electrons): ωR,th(k)=B0k2/(1+ k2)
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(a) (b)

FIGURE 4. (a) Time evolution of |By|(k1, t). (b) Spectral magnetic energy |By|
2(k1, ωR)

as a function of the pulsation ωR. The red dashed line indicates the theoretical wave
frequency =ωR,th, while the red dot-dashed lines show the ωR-resolution ωR,th ±1ωR/2.

(Krall & Trivelpiece 1973). Note that, for the considered wavenumber, a negligible
damping of whistler waves is expected. In figure 4(a), the red-dashed line represents
the value of the resonant pulsation from the above expression for ωR,th, while the
two vertical red dot-dashed lines indicate the interval of numerical uncertainty 1ωR=

2π/tmax ' 0.063ωp,e.

3.3. Propagation of Alfvén waves
Here we show numerical results concerning the propagation of Alfvén waves along a
background magnetic field. The adopted normalization for these tests is the hybrid one.
We perform a 1D–3V run, where B0=B0ex and B0=1. The box length is Lx=2π50dp,
while vmax

e,i = 5vth,e and vmax
p,i = 5vth,p (i= x, y, z). The phase space has been discretized

with Nx= 32, Ne,vx =Ne,vy =Ne,vz = 25, Np,vx = 40 and Np,vy =Np,vz = 35 gridpoints. The
mass ratio has been artificially set to mp/me= 25, thus avoiding extremely small time
steps, while Te/Tp = 1, ū= vA/c= 10−3, ζ = c/vA = 103 and βp = 2v2

th,p/v
2
A = 1.

The initial equilibrium, composed of spatially homogeneous Maxwellian protons and
electrons, has been perturbed with the following proton bulk-speed perturbations:

δup,y = A sin(kx), (3.3)
δup,z = A cos(kx), (3.4)

where A=10−4 and k= k1=2π/Lx. Figure 5 shows the time evolution of |Bz|(k1, t) (a)
and the magnetic spectral energy |Bz|

2(k1, ωR) as a function of ωR (b). The recovered
resonant peak is in agreement with the theoretical pulsation, evaluated through
a fully kinetic linear solver of the dispersion relation (Camporeale & Burgess
2017). Moreover, no Landau damping is observed, since it occurs at much smaller
scales (Barnes 1966; Vàsconez et al. 2014; Camporeale & Burgess 2017). This test
represents the first attempt towards a general description of Alfvén waves, where
electron physics is also taken into account. Since including electron physics is
currently too computational demanding, we plan to continue the investigation in a
separate, future work.

4. Temperature anisotropy driven instability: electron Weibel instability
Another class of interesting numerical tests, which can be performed to point out the

reliability of the ViDA code, concerns the onset of micro-instabilities, such as whistler,
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(a) (b)

FIGURE 5. (a) Time evolution of |Bz|(k1, t). (b) Magnetic spectral energy |Bz|
2(k1, ωR) as

a function of ωR. The red solid line indicates the theoretical wave frequency ωR,th, while
red dashed lines show the ωR-resolution ωR,th ±1ωR/2.

mirror and Weibel instabilities driven by a temperature anisotropy (Weibel 1959; Gary
& Karimabadi 2006; Califano et al. 2008; Palodhi, Califano & Pegoraro 2009, 2010;
Chen & Chacón 2014; Camporeale & Zimbardo 2015; Chen & Chacón 2015).

Here we focus on the development of the electron Weibel instability, that produces
electromagnetic fluctuations transverse to the wavevector k. The most suitable
normalization to perform this analysis is the electromagnetic one. In particular
we discuss the results of a 1D–3V run with k= kêx, although we have verified that
instability is triggered in the same way also in the different phase-space configuration
(two and three dimensions). The mass ratio is mp/me = 100, while Te/Tp = 0.01.
Electrons are initialized with a bi-Maxwellian distribution function, with thermal
speeds vth,e,x = 2.5 × 10−2c and vth,e,y = vth,e,z = 4 × 10−2c, this giving a temperature
anisotropy A = Ty(z)/Tx = 2.56. Protons have a Maxwellian velocity distribution at
t = 0, with a thermal speed vth,p = vth,e,x and homogeneous density. However, in this
case, protons mainly act just as a neutralizing background, not being involved in
the dynamics during the linear stage (i.e. during the instability development). No
background magnetic field has been introduced. Physical space, whose length is
Lx = 32de, has been discretized with Nx = 64 gridpoints. Velocity space has been
discretized with 513 gridpoints for both protons and electrons and vmax

e(p) = 5vth,e(p) in
each velocity directions.

The initial equilibrium has been perturbed through a sinusoidal, transverse
perturbation, imposed on the electron bulk speed,

δue,y = A sin(kx), (4.1)
δue,z = A cos(kx), (4.2)

where A = 2 × 10−5 and k = k1 = 2π/Lx. Such bulk-speed perturbations produce a
current density, which in turn generates magnetic fluctuations. Figure 6 reports the
time evolution of the magnetic spectral energy density WB(k1, t) = (|By|

2(k1, t) +
|Bz|

2(k1, t))/2. The red-dashed line indicates the expected linear instability growth
rate ωth

I ' 4× 10−3ωp,e, evaluated through a linear solver for the roots of the kinetic
electromagnetic dielectric function. In the early stage of the simulation, WB increases
exponentially with a growth rate in very good agreement with the expected one. Then,
oscillations saturate at a nearly constant value in the nonlinear regime of evolution
(Chen & Chacón 2014).
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FIGURE 6. Time evolution of WB(k1) = (|By|
2(k1) + |Bz|

2(k1))/2. The red dashed line
indicates the linear instability growth ωth

I ' 4× 10−3ωp,e, calculated with a linear solver of
the fully kinetic dispersion relation (Camporeale & Burgess 2017).

5. Dynamics of magnetic reconnection

In this section we present the results of a magnetic reconnection simulation.
Generally speaking, Vlasov simulations of magnetic reconnection represent a strong
numerical challenge because of the huge memory and CPU time required by Eulerian
algorithms. This approach, if successful, would certainly provide a crucial contribution
to the understanding of the magnetic reconnection process especially at electron scales,
thanks to the fact that Eulerian algorithms allow for an almost noise-free description
of fields and particle DFs. A noise-free description is crucial to properly understand
e.g. which electromagnetic fluctuations contribute to the reconnection electric field in
the form of anomalous resistivity and how distribution functions are modified leading
to electron heating.

We have performed a 2D–3V symmetric magnetic reconnection simulation.
Reconnection is symmetric when the values of magnetic field and density are equal
on the two opposite sides of the current sheet. The initial condition of our simulation
is the one adopted in the geospace environmental modeling (GEM) challenge (Birn
et al. 2001), in order to allow for a direct comparison to previous studies (Birn et al.
2001; Schmitz & Grauer 2006b). For this reason, we have also chosen the hybrid
normalization (see § 2.3).

The equilibrium is set by adapting the Harris equilibrium (Harris 1962) to the
periodic boundary conditions in the spatial domain. In particular, the component of
the magnetic field Bx(y) corresponding to the double current sheet profile reads,

Bx(y)= B0

[
tanh

(
y− Ly/2

L1

)
− tanh

(
y
L2

)
− tanh

(
y− Ly

L2

)]
. (5.1)

This profile is characterized by the presence of two gradients (the current sheets)
varying as an hyperbolic tangent and located at y= Ly/2 and y= 0 (and so at y= Ly)
where Ly is the length of the spatial domain in the y direction. The first hyperbolic
tangent is the one defined in Harris (1962) and L1 is the corresponding current sheet
thickness. The second and third hyperbolic tangents in (5.1) have been included to
satisfy the spatial periodicity; the value of L2 is taken sufficiently large compared to L1
to slow down the development of reconnection in the second current sheet with respect
to the main one. The electron and ion temperature are set as uniform at the initial time
and the density n(y) is defined in order to satisfy pressure balance. Then, from (2.5)
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and considering ∂tEL = 0 at the initial time, we get the initial current density j =
(0, 0, jz(y)).

Following the prescriptions of the Harris equilibrium we get, in normalized units,

n0(Te + Tp)=
B2

0

2
, (5.2)

ue,0

Te
=−

up,0

Tp
, (5.3)

jz(y)
n(y)
≡ u0 = up,0 − ue,0. (5.4)

Equation (5.3) corresponds to the no charge separation condition of the Harris
equilibrium so that quasi-neutrality is imposed, ne(y) = np(y) = n(y). In other words,
the electric field is zero at the initial time. Moreover, from (5.3)–(5.4) we have,

ue,0 =−
u0

1+ Tp/Te
, (5.5)

up,0 =
u0

1+ Te/Tp
. (5.6)

It is worth pointing out that this is not an exact Vlasov kinetic equilibrium. In
particular, it differs from the equilibrium presented by Harris since in this simulation
the spatial domain is periodic in the varying y-direction. On the other hand, the initial
configuration is in force balance and we have checked that the initial equilibrium
is not significantly affected by, for example, ballistic effects within the time scale
of reconnection considered here. As for the GEM challenge (Birn et al. 2001),
fluctuations are superposed on the initial magnetic field in order to obtain a single
magnetic island at the centre of the space domain at the initial time. In particular,
δB=∇δψ × ẑ and

δψ(x, y)=ψ0 cos(2πx/Lx) cos(2πy/Ly), (5.7)

where, as already stated, Lx and Ly are the lengths of the spatial domain in x and y
directions, respectively. According to GEM challenge, in scaled units, ψ0 is set to 0.1.

By using the relation δB(x, y)=∇δψ(x, y)× ẑ and (2.10), we derive the expression
for the current density fluctuations δj(x, y) consistent with δψ(x, y). In particular, it
is possible to define δj(x, y)= (0, 0, δjz(x, y)). Finally, the initial electron and proton
distribution functions are shifted Maxwellian distributions with drift velocities along
the z direction and temperature Te and Tp.

The phase space has been discretized with Nx × Ny = 512 × 512 gridpoints in the
spatial domain, Ne,vx × Ne,vy × Ne,vz = 41× 41× 81 gridpoints in the velocity domain
for electrons and Np,vx ×Np,vy ×Np,vz = 31× 31× 31 gridpoints in the velocity domain
for protons. We also set vmax

e =5vth,e and vmax
p =5vth,p, where the normalized vth,p is set

to 1. Other simulation parameters are L1 = 0.5dp, L2 = 2.5dp, mp/me = 25, n∞ = 0.2,
Te/Tp = 0.2, Lx = Ly = 25.6dp. Also, we set B0 = 1 and n0 = 1. All parameters are
chosen to be as close as possible to the simulation parameters listed in Birn et al.
(2001).

In figure 7 we show the evolution of the reconnected flux given by the difference
1ψ between the magnetic flux ψ evaluated at the X point and at the O point.
Accordingly to the initial perturbation, the X-point and the O point are initially
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FIGURE 7. Time evolution of the reconnected magnetic flux 1ψ .

(a) (b)

(c) (d)

FIGURE 8. Contour plots of Bz (a); out-of-plane electron current density je,z (b); out-of-
plane proton current density jp,z (c); and electron number density ne (d). The quantities
are shown at the time t∗= 15.27Ω−1

c,p . At that time 1ψ = 1.18. All the panels are zoomed
in y in the interval [6dp, 19dp].

located at (Lx/2, Ly/2) and (0, Ly/2) and their locations do not significantly change
throughout the simulation run. The behaviour of 1ψ is very similar to the evolution
of the reconnected flux in Birn et al. (2001). Reconnection evolves with a reconnected
flux that remains close to zero until t ∼ 15Ω−1

c,p , when a sharp increase is observed.
Then, the reconnection rate stays relatively constant until the reconnected flux begins
to saturate at t∼ 30Ω−1

c,p .
In figure 8 we show the contour plots of the out-of-plane magnetic field Bz (a), of

the electron current density in the z-direction je,z (b), of the proton current density
in the z-direction jp,z (c) and of the electron number density ne (d). In each panel,
the contour lines of the magnetic flux ψ are superposed; Bz exhibits the typical
Hall quadrupolar pattern usually observed during symmetric magnetic reconnection.
This magnetic signature indicates that the ions are demagnetized while the electrons
are still frozen to the magnetic field. The difference in their dynamics produces
the out-of-plane Bz (Mandt, Denton & Drake 1994; Uzdensky & Kulsrud 2006).
The quadrupolar structure that we find is analogous to the one obtained with other
kinetic codes, both Eulerian (Schmitz & Grauer 2006b, see figure 2) and Lagrangian
(Pritchett 2001, see Plate 1(b)). We note that the jp,z pattern closely follows the
density pattern (ne ' np) so that jp,z is depleted at the X point while it reaches its
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(a) (b)

FIGURE 9. (a) The x component of the electron velocity ue (black line) and of the proton
velocity up (red line) at x∗ = 3.00dp and (b) at x∗ = 10.52dp. The quantities are shown at
the time t∗ = 18.13Ω−1

c,p .

maximum value within the magnetic island. On the other hand, je,z is enhanced at the
X point and the region of strong je,z is elongated along x. Away from the X point,
je,z splits into two branches that identify the separatrices, as it was also observed
by Shay et al. (2001) (see their figure 6d). The electron current at the X line has
a thickness comparable to dp which corresponds to 5de. The maximum value of the
normalized Bz is 0.09 while the maximum values of jp,z and je,z are 0.39 and 1.49,
respectively. These values are overall slightly smaller than the values found in a
similar Vlasov–Darwin simulation described in Schmitz & Grauer (2006b).

In figure 9 we show the reconnection outflow of protons and electrons at
t∗ = 18.13Ωc,p. In particular, we note that at x = 3dp (panel (a)), corresponding
to a distance of 9.8dp from the X-point located at Lx/2= 12.8dp, the electron velocity
is characterized by two peaks corresponding to the separatrices, while the proton
velocity is concentrated in the centre of the outflow region and it reaches lower
values, as expected. The presence of the two peaks is consistent with the je,z pattern
shown in figure 8(b). Figure 9(b) shows the same quantities of figure 9(a) at a
distance of 2.3dp from the X-point where the outflow is still developing and we note
that ue,x is rather similar in shape and value to up,x.

6. Performance test on the ViDA code
In this section, we present preliminary performance tests of ViDA implemented

on the Marconi-KNL cluster at the CINECA supercomputing centre (Casalecchio di
Reno (BO), Italy). The Marconi cluster is equipped with 3600 Lenovo Adam Pass
nodes, interconnected through the Intel OmniPath network and each one composed of
a 1KNL processor (68 cores, 1.40 GHz), formally 96 GB of RAM (effective 83 GB)
and 16 GB of MCDRAM. The tests have been performed on a simple equilibrium
configuration (Maxwellian DFs with no perturbations). We remark however that this
choice does not affect the code performance.

ViDA numerically integrates the VD equations in a six-dimensional phase space
(3D–3V: x, y, z, vx, vy, vz). Only the three-dimensional physical space is parallelized
using cubic cells (squared in the two-dimensional configuration). For implementing
these tests, we have chosen 513 velocity gridpoints for each particle DF (protons
and electrons), which represent a typical value adopted in production runs, and we
have performed approximately 100 time steps per test (note that changing the step
number does not act on the code scalability). Note that two DFs are advanced in time
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(a) (b)

(c) (d)

FIGURE 10. (a) Strong scaling from 128 to 1024 cores on Marconi KNL using 2
OpenMP threads per Task MPI on the 2.5-dimensional set-up. (b) Strong scaling using
64 MPI task and from 2 to 16 OpenMP Threads per task on the 2.5-dimensional set-up.
(c) Strong scaling from 128 to 1024 cores on Marconi KNL using 2 OpenMP threads
per Task MPI on the three-dimensional set-up. (d) Weak scaling from 64 to 1024 cores
on Marconi KNL using 2 OpenMP threads per Task MPI on the three-dimensional set-up.

through the ViDA algorithm, this limiting the number of spatial grid points per single
processor and hence increasing the number of communications.

As a first step, we have analysed the parallel performance in the 2D–3V
configuration, adopting a physical-space grid with 1024 × 1024 points. This set-up
requires approximately 6 TB of RAM, corresponding to, at least, 64 Marconi-KNL
nodes. We have performed a strong scaling test by reducing the number of MPI tasks
per node from 8 to 1 and maintaining the same number of two OpenMP threads per
task. Results are presented in figure 10(a): the parallel efficiency scales efficiently
up to 512 cores. As the number of cores increases, the efficiency is degraded owing
to the more significant weight of MPI communications. This is mainly due to the
huge memory request of the code combined with the Marconi KNL architecture. The
code performance would strongly benefit from using a computer architecture with
a larger RAM and a lower number of cores per node. We have also verified that
the performance degradation cannot be handled by using an OpenMP strategy, as
shown in figure 10(b), since the code performance is not affected by increasing the
number of threads per node. In summary, within the current parallelization, the best
performance is achieved with 32 MPI threads and 2 OpenMP tasks per node on a
KNL system.

A slightly better performance is achieved using a full three-dimensional configur-
ation with 128 × 128 × 64 grid points in the spatial domain. The strong scaling
from 128 to 1024 cores is shown in figure 10(c). A weak scaling test has been
also performed by multiplying the number of spatial points and the number of cores
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(nodes) by the same factor. From the results, presented in figure 10(d), it can be
appreciated that the parallel efficiency is high only up to several hundred cores.

These preliminary tests show a reasonable parallel efficiency on KNL architecture,
at least up to some hundreds of cores. We are presently working to increase the code
efficiency, in particular optimizing the communication pattern of the ViDA algorithm.
We note that these results in part depend on the employed architecture. It is worth
finally highlighting that, for instance, by using a Skylake machine with 192 GB and
48 cores per node, we would be able to increase by a factor of 3 the number of spatial
gridpoints per node, thus increasing the parallel efficiency of the code, as the number
of communications would strongly decrease.

Concerning the computational costs, the ViDA code is approximately twice as
computationally expensive as the HVM code (Valentini et al. 2007), which has been
recently used for three-dimensional simulations of plasma turbulence (see for instance
Cerri et al. (2018)). More specifically, the reconnection run presented here – which is
the most expensive test in this paper in terms of required computational resources –
has a cost of slightly less than 0.1 Mh on a Marconi supercomputer using 16 nodes
and 512 MPI processes. On the other hand, with ViDA being a code for a new piece
of physics, it is difficult to foresee the exact cost of a three-dimensional reconnection
(or turbulence) run because the numerical and physical parameters, as well as the
duration of the run, can vary significantly with respect to the standard ones used
with the HVM code. Based on the experience with the HVM code, we may suggest
that a high-resolution three-dimensional run of magnetic reconnection focusing on
the electron physics would take from a few to a few tens of Mh. Such a significant
allocation of computing time can be obtained, for example, in the framework of a
PRACE project.

7. Conclusion

In this paper we have presented a fully kinetic code (ViDA) based on a Vlasov–
Darwin algorithm, where only light waves are excluded in order to relax the constraint
on the time step advancement. This approach is particularly suited for the investigation
of the kinetic dynamics from sub-ion scales down to the electron kinetic scales de and
to the Debye length λD. As typically the case for space plasmas, but often also in
the laboratory, inter-particle collisions are not described, since collisional effects are
assumed to be insignificant.

ViDA has been tested against several waves modes, in particular Alfvén, whistlers
and plasma waves. The development of the Weibel instability and reconnection,
both in a regime where the main dynamics is driven by the electrons, has been
also reproduced. These tests represent typical regimes of interest for studying the
electron-scale kinetic dynamics representing today a strong computational challenge
and a frontier problem for the understanding of electron plasma physics.

One of the main future objectives of ViDA will be the study of the structure and
dynamics of the electron diffusion region, including the role of anomalous resistivity
in Ohm’s law and the mechanisms of electron heating, which are among the main
targets of satellite MMS data analysis (Torbert et al. 2016; Genestreti et al. 2018;
Cozzani et al. 2019). Last but not least, we will make use of the ViDA code for the
study of the plasma turbulent dynamics focusing on the problem of the ‘dissipative’
scale, of primary interest in the context of the solar-wind turbulent heating at kinetic
scales (Vaivads et al. 2016).
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