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Bsc Bèta-Gamma

Major Physics

Report Bachelor Project Physics and

Astronomy

Using Convolutional Neural Networks
for Solar Wind Classification

by

Marleen Rijksen

10465030

18 April 2017

15 ECTS

Research conducted between 06-02-2017 and 18-4-2017

Supervisor:
Dr. Enrico Camporeale

Second assessor:
Dr. Anna L. Watts

Center for Mathematics and Computer Science



Contents

1 Summary 2

2 Popular scientific summary (Dutch) 3

3 Introduction 4

4 Related work and Background Material 5
4.1 Neural networks in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1.2 How neural networks work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.1 Training a Convolutional Neural Network . . . . . . . . . . . . . . . . . . 12

4.3 Solar Wind Categorization Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Description of work 14
5.1 Solar and Heliospheric Observatory Dataset . . . . . . . . . . . . . . . . . . . . . 14
5.2 Architecture of the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Training Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Results 17

7 Discussion 20

8 Conclusions 22

9 Acknowledgements 23

10 References 24

Appendices 26

1



1 Summary

The prediction of space weather is important because it can cause hazardous effects on (costly)
human technology and health. The term space weather refers to physical processes created by
the Sun that affect human life. In this research an attempt was made to train a convolutional
network on solar images to classify different types of solar wind. Solar wind is a stream of
plasma and charged particles emitted by the sun. To predict the effects solar wind can have
it is important to know what kind of solar plasma is carried towards earth by solar winds. A
four plasma-type categorization scheme is used to distinguish the different solar plasma types.
Images of EIT-171 aboard the Solar and Heliospheric Observatory-satellite were used to train
the top layers of the pre-trained Inception-V3 network to classify the images into the four
categories. Each of the categories is tested against the other three categories. It is found that
the network could identify the different categories with accuracies ranging from 51% to 80%.
Although these accuracies are not reliable enough for an accurate prediction system, taking into
account the limitations of this project these results are promising for further research.
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2 Popular scientific summary (Dutch)

Een algemeen bekend fenomeen is de Aurora Borealis, oftewel het noorderlicht. Dit noorder-
licht is voornamelijk waar te nemen op hoge geografische breedtes en zorgt voor spectaculaire
lichtshows. Het licht is het gevolg van zonnewind, een constante stroom geladen deeltjes afkom-
stig van de zon. Wanneer tijdens hevige zonnewind de geladen deeltjes de polen van de aarde
bereiken kan men het noorderlicht waarnemen (of op de zuidpool, het zuiderlicht).

Deze zonnewind heeft niet enkel het noorder- of zuiderlicht tot gevolg. De effecten van zon-
newind op en rondom de aarde kunnen nadelig zijn. Zonnewind kan gevaarlijk zijn voor elektron-
ica. Denk hierbij aan satellieten, navigatiesystemen, elektriciteitswerken en radiocommunicatie.
In 1859 was door het gevolg van hevige zonnewind de telegraafverbinding tussen Amerika en
Europa uitgevallen en diverse branden werden hierdoor veroorzaakt. Naast elektronische prob-
lemen kunnen astronauten die niet beschermd worden door atmosfeer rondom de aarde zeer
grote risico’s lopen op het gebied van gezondheid.

Door bovengenoemde problemen zou het handig zijn als men kan voorspellen wat voor type
zonnewind er op komst is. Op die manier kunnen er voorzorgsmaatregelen genomen worden
om de nadelige gevolgen te beperken. Een van de manieren om dit te doen is door de satelli-
etbeelden van de zon te analyseren. De Solar and Heliospheric Observatory (SOHO)-satelliet
heeft instrumenten aan boord die de gehele dag beelden maken van de zon. Op deze beelden is
te zien hoe actief de zon is en aan de mate van activiteit kan men zien welk type zonnewind op
komst is. Deze beelden kunnen bekeken worden nog voordat de zonnewind op aarde aankomt
gezien zonnewind ongeveer 50 tot 100 uur onderweg is van de zon naar de aarde.

Beeldherkenning kan worden gebruik om de satellietbeelden te analyseren. Beeldherkenning
wordt tegenwoordig in veel toepassingen gebruikt, zelfs in smartphones (gezichtsherkenning).
Om beeldherkenning mogelijk te maken worden voornamelijk ‘convolutional neural networks’
gebruikt. Dit zijn computer algoritmes die onder andere in staat zijn om afbeeldingen te cate-
goriseren. In dit project is zo een algoritme gebruikt om de satelliet afbeeldingen te categoriseren
in vier verschillende zonnewind categorieën. Het is belangrijk om de zonnewind te categoriseren
aangezien de effecten van de verschillende soorten zonnewind ook verschillen.

Een ‘convolutional neural network’ is een bepaald soort kunstmatig neuraal netwerk. Deze
kunstmatige neurale netwerken zijn computer modellen die gebaseerd zijn op de werking van
het brein. Het interessante van deze netwerken is dat ze kunnen leren. De manier waarop
deze netwerken leren is aan de hand van voorbeelden. Als een netwerk bijvoorbeeld geschreven
getallen moet leren herkennen, wordt er een groot aantal afbeeldingen met labels ‘gegeven’ aan
het netwerk. Deze labels bevatten informatie over wat er in de afbeelding staat, in dit geval
het getal wat er op de afbeeldingen wordt weergegeven. Door het netwerk te trainen is het
uiteindelijk in staat om afbeeldingen zonder labels te classificeren.

In dit onderzoek is een ‘convolutional neural network’ getraind op afbeeldingen van de zon
met vier verschillende soorten labels. Deze labels bevatten de verschillende types zonnewind.
Afbeeldingen van elke soort zonnewind zijn getest tegenover afbeeldingen uit de drie overige
soorten zonnewind. Omdat het erg veel tijd kost om een heel netwerk te trainen is er in dit
project gebruikt gemaakt van een netwerk dat al getraind is op een andere dataset. Enkel
het laatste gedeelte van het netwerk is op onze dataset getraind. Het gebruikte netwerk in
dit project heet Inception-V3, dit netwerk kon met de ImageNet classificatieset afbeeldingen
uit 1000 categorieën categoriseren met een top-5 nauwkeurigheid van 94.4%. Het door ons
getrainde netwerk kon de afbeeldingen categoriseren met nauwkeurigheden variërend van 81%
tot 51%. Gezien de korte duur van dit project en de daardoor nog mogelijke verbeteringen zijn
dit veelbelovende resultaten voor verder onderzoek.
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3 Introduction

The term space weather refers to the physical processes created by the Sun, that have an
effect on human technology and health on Earth and in space. Solar plasmas like coronal Mass
Ejections can scatter large amounts of radiation and charged particles towards the Earth. The
stream of charged particles released by the Sun is called solar wind. The Earth environment and
geomagnetic activity is affected by the solar wind (Qahwaji & Colak 2007). Common effects
that can arise due to space weather are current surges in power lines, radiation hazards in the
polar regions and spacecraft anomalies due to surface charging (Feynman & Gabriel 2000).
Because of these effects it is important to be able to predict space weather so that precautions
can be taken, such as temporarily disabling sensitive satellite systems for the duration of the
solar flare.

In order to predict space weather it is important to know which kinds of solar plasmas can
be produced by the Sun. When solar wind plasma is categorized it is usually divided in two
categories, either “fast wind” or “slow wind” depending on the speed of the wind (Dasso et al.
2005). In this research a four plasma-type categorization scheme developed by Xu & Borovsky
(2015) is used. An explanation about this categorization scheme and why it is used in this
research can be found in section 4.3.

Solar images can help to predict which kind of solar plasma is heading towards Earth. Instru-
ments on satellites can for example observe light with different wavelengths emitted by the Sun
and capture images. These images contain, amongst other things, information about solar wind.
When certain solar wind events are observed, depending on the speed of the solar wind, it will
take approximately 50-100 hours before this solar wind reaches Earth (Feldman et al. 2005).
Solar wind can thus be observed before it arrives on Earth. In this research images captured by
the EIT-171 instrument aboard the SOHO (Solar and Heliospheric Observatory)-satellite were
analysed.

One of the tools which can be used to classify images are Artificial Neural Networks (ANN).
Articifial neural networks are information processing computational models inspired by the
biological brain. These networks can be used, for example, to classify datasets like images or
audiofiles. ANNs can learn by examples, just like the human brain. In short, an ANN can
learn from a dataset to classify objects not included in the dataset. Special types of ANNs are
Convolutional Neural Networks (CNNs). As opposed to other types of networks, CNNs treat
the input data as volumes (instead of vectors) and take into account the spatial structure of
the data. CNNs also use fewer parameters then standard ANNs meaning that they are easier
to train on larger datasets. CNNs have proven to achieve higher accuracies than other types of
ANNs at tasks like image recognition (Krizhevsky et al. 2012). Because of the state-of-the-art
results of CNNs on image recognition tasks in this research this type of network is used to
classify the different types of solar wind.

Research on CNNs has made a lot of progess. The Inception-V3 network achieved for example
a 5.6% top-5 error on the ImageNet test set (consisting of 150,000 images labeled with 1000
categories) (Szegedy et al. 2016). Because of the need to predict space weather and the
developments in CNNs in this research the two are combined. The top-layers of the inception-
V3 network where trained on a dataset consisting of solar images with four different categories
(chapter 5). With this research a foundation is laid for further research towards using CNNs
for solar wind classification. A general overview of neural networks is given in section 4.1,
followed by a detailed discussion of one particular set of neural networks in section 4.2. The
categorization scheme used in this project is discussed in section 4.3. A pre-existing trained
neural network is used to analyse SOHO data in section 5. Finally, the results and discussion
are discussed in section 6 and 7 to draw conclusions in section 8.
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4 Related work and Background Material

In this section general information about neural networks is given. The historical background
of neural networks is discussed and after that some knowledge about basic neural networks is
provided. Following is a section about a special type of neural networks: convolutional neural
networks.

4.1 Neural networks in general

Tasks like image recognition are very hard to solve with handcoded rules. An example of a
domain in which handcoded rules fail to work properly is face recognition. A human can easily
recognize a set of pictures of faces, but the ordering of the pixels between the pictures is very
inconsistent. It is very difficult to write handcoded rules to tell the computer where and how
to look for certain features in the image. These features are different for each image and it
would take an impossible amount of handcoded rules to tell the computer all the possible pixel
orientations in which a face is represented. Instead of using handcoded rules it is better to use
artificial neural networks for tasks like face recognition (Muller & Guido 2017). CNNs are a
special type of artificial neural network and have proven to achieve the best results in image
recognition tasks.

It is important to first understand the basics of artificial neural networks in order to learn how
CNNs work. In the first part of this chapter an overview is given about how single (artificial)
neurons work, how a neural network is designed and how neural networks can be trained. In the
second part of this chapter an introduction to Convolutional Neural Networks is provided.

4.1.1 Historical background

McCulloch & Pitts (1943) tried to understand how (complex) neural networks in the brain
work using the building blocks of the brain: neurons. They made a simplified model of a
neuron and showed that articifical neural networks could be used to compute arithmetic or
logical functions.

Rosenblatt (1958) was inspired by the work of McCullock and Walter Pitts and invented the so
called perceptron model. This network consisted of a type of artificial neurons (called percep-
trons) and was able to perform pattern recognition. Widrow and Hoff also developed a simple
neural network similar to the one of Rosenblatt (Widrow et al. 1960). Unfortunately, both
of these networks suffered from limitations and they were not able to train more complex net-
works. The research towards neural networks became stagnated. One of the limitations of these
networks were that the neurons could not solve “exclusive or” or “exclusive nor” functions. It
was around 1980 that research in neural networks increased again because of the computational
possibilities at that time and the discovery of backpropagation algorithms to train networks
(Demuth et al. 2014).

In a different field of science, Hubel & Wiesel started to study the behaviour of neurons in
the visual cortex of cats in 1959. They discovered that the visual cortex has an hierarchical
organization ranging from simple cells towards hyper complex cells (Wiesel & Hubel 1959).
The cells in the visual cortex respond to visual inputs such as the orientation of edges or colors.
They discovered that the complex cells extracted more complex information from the visual
inputs than the simple cells. This hierarchical organization and the extraction of increasingly
complex features inspired CNNs (Schmidhuber 2015).
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4.1.2 How neural networks work

Biological Anology Artificial neurons are a simplification of real neurons in the biological
brain. The brain is build up of approximately 1011 neurons, all higly connected with each other.
The basic parts of neurons are the cell body, the dendrites, the axon and synapses. The dendrites
of a neuron receive input from other neurons, which are then summed by the cell body. If the
sum of these input signals exceeds a certain treshold, the cell body fires a signal through its
axon. The neurons receive input signals via the synapses. A synaps is the connection between
the axon of a neuron and the dendrite of another neuron. The strength in which the signals
are passed is controlled by a complex chemical process. The function of the neural network is
thus established by the connections between the neurons and the strength with which signals
are passed through the network (Demuth et al. 2014). In figure 1 a schematic overview of two
neurons is given.

Figure 1: Schematic of two biological neurons where the cell body, the axon, the dendrites and
the synapse are displayed (Demuth et al. 2014).

Artificial neurons Just like biological neurons, artificial ones receive inputs from other ar-
tificial neurons. The inputs are then evaluated, not by a cell body but by activation functions.
Depending on the activation function and the input, a signal with a certain strength is passed
to other articifical neurons.

Figure 2: Schematic of an artificial neuron. x1, x2 and x3 are the inputs of the neuron. The
output is based on which type of activation is used in the neuron.

As in biological neurons, not all inputs of an artifical neuron are as important as other inputs.
Each input is multiplied by weights, w1, w2, ..., wn, to express the importance of input to the
output. Also, a bias, b, is added to shift the activation function to the left or to the right, it
is a measure of how easy it is to get a higher (or lower) signal. There are different activation
functions which can be used in artificial neurons. One of these (historically often used) is the
sigmoid function,
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σ =
1

1 + e−x
(1)

where σ is the output and x is the input of the neuron. Taking all the weights and biases into
account gives us

σ =
1

1 + exp(−
∑
i
wixi − b)

(2)

with inputs xi, weights wi and a bias b. Note that the bias is a horizontal shift in the activation
function of an artificial neuron and that the same bias b is applied to each input. In figure 3 a
plotted version of the sigmoid function is provided. When the input of the sigmoid function is a
large positive number the output of the neuron is approximately 1, if the input is a large negative
number the output is approximately 0. Beside the sigmoid function there are other activation
functions as well, among them are for example f(x) = tanh(x), ReLu: f(x) = max(0, x) and
f(x) = x.

Figure 3: Plotted sigmoid function

Networks of artificial neurons Individual articifial neurons can be connected with each
other to form a neural network. Neural networks consist of three different layers: an input
layer, hidden layers and an output layer. All of the neurons of the previous layer are connected
to neurons in the next layer. The advantage of using this architecture is that it allows to use
vector and matrix multiplication (instead of treating every value seperately). The input would,
for example be a vector containing all the pixel information and the weights would be ordered
in a matrix. When this matrix W is multiplied with the input vector, a new vector is created
which then again is multiplied with new weights in the next layer. In the last layer a product
between a weight matrix and vector should output a new vector representing the scores for each
class.

Neural networks can have different types of input data, ranging from images to audio files. An
application of a simple neural network could for example be to recognize handwritten digits.
The input would be a 28 x 28 image and the output would be an indication about which digit
the network thinks the image represents. In this case the input layer would have 28 x 28 =
784 neurons, where the input of each neuron is a pixel value of the image (we assume that
the image is greyscale and that each pixel corresponds to a value indicating the intensity of
greyness). There can be multiple hidden layers and the output layer could have 10 neurons.
When an image with the number 5 on it would be fed to this network, the 5th neuron of
the output layer should give, for example, the highest output of all output neurons. Then
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Figure 4: Example of a 5-layered fully connected neural network. This network consists of an
input and an output layer and has three hidden layers. (Nielsen 2015)

the network ‘thinks’ the probability that the given image represents a 5 is higher than the
probability the image represents another number. Whether a neural network correctly handles
these images and gives the correct output signal depends on the weights and biases of all the
neurons (Nielsen 2015). How these weights and biases are determined is explained in the next
paragraphs.

Softmax Classifier The output of the neural network described above is difficult to interpret.
To handle the output of the last layer of the network classifiers can be used to convert the
outputs into, for example, probabilities. The Softmax classifier turns the output of the neural
network into normalized class probabilities and it treats the output values as unnormalized
log probabilities for each class (where the classes are numbers from 0 to 9, in the example
described above). The conversion from arbitrary numbers to probabilities is done with the
Softmax function,

fi(yi, xi) =
efyi∑
j e

fj
(3)

where yi is the correct label given the image xi, fyi is the class score for the correct label and
fj is the jth element of the vector containing the class scores. This function returns a vector of
values between 0 and 1 which can be interpreted as normalized probabilities.

Training of neural networks When using neural networks it is important to choose the
architecture of the network (for example the number of neurons in each layer or the number
of layers). When an architecture is chosen, the network needs to ’learn’ the correct weight
parameters in order to give the desired output. The input of a network is fixed, but the weights
can be changed in order to make the network perform better.

An important term when training networks is the so called loss, which gives a measure of how
well the network is performing. When a network is trained it is given input in the form of
images (or other data types, like audio files) with corresponding labels. These labels contain
the correct output, in our digit example the label would be one of the ten digits. When a
network returns a certain output, this output is compared to the correct output via the loss
function. There are different types of loss functions, the softmax classifier uses cross-entropy
loss. Loss functions give the network a measurement of how well it performs, when the loss is
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high the network probably does not give the desired results. The cross-entropy loss is described
by

Li = − log
efyi∑
j e

fj
(4)

where fyi is the class score for the correct label and fj is the jth element of the vector containing
the class scores (as described in formula 3). The output of this function is the negative log
likelihood of the correct class. We want this function to be minimized (or, we want the log
likelihood to be maximized). In other words, we want to train our network in such a way that
the loss is minimized and that the output value gives the highest probability for the correct
class. A way of calculating the minimum of the loss function would be to analytically find the
minimum of the loss function by computing the derivatives of the loss function with respect
to the weights. This would quickly become very difficult though, in neural networks there are
often many variables on which the loss function depends. Instead of analytically determining
the minimum of the loss function, the backpropagation algorithm is used.

Backpropagation In neural networks, the backpropagation algorithm is used to change the
weights and biases in such a way that the loss function gets minimized. This backpropagation
algorithm is introduced by Rumerhart et al. (1986). Backpropagation is a recursive application
of the chain rule which computes gradients throughout the whole network. When an input
image is propagated through the network we get an output score. With the help of this output
score the loss can be calculated, we want this loss to be minimized. The loss is a function of
the input data and the weights and biases of the neurons. The gradients of the loss function,
with respect to the weights, can be calculated for each neuron to determine the contribution
each neuron has on the loss. When each contribution is known the weights are updated in such
a way that the network attempts to minimize the loss function. When training a network data
gets propagated through the network multiple times and weights will be updated according to
the outcomes of the loss function.

There are different ways to update the weights, among them is the RMSprop method (Tieleman
& Hinton 2012). RMSprop is an optimizer which is not introduced in a publication, yet it is
often used and shows to be a favorable optimizer. In this research the inception-V3 network is
used (section 5.2) and this network is trained with the RMSprop optimizer as well (Szegedy
et al. 2016). Although a mathematical derivation of this optimizer is not provided here it is
important to know what the concept of learning rate is. The learning rate of a network is
a parameter that controls the amount by which the weights and biases are changed. When
the learning rate is too high, the network cannot converge to a certain accuracy. When the
learning rate is too low it might take a lot of time before the network converges to its optimal
accuracy.
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4.2 Convolutional Neural Networks

A neural network as described above would need a lot of weights if the input would be a much
larger (and colored) image. If the input would be a 300 x 300 x 3 (where the 3 stands for the
three color channels: red, green and blue) each neuron in the first hidden layer would have
270, 000 weights. If a network has a few layers containing neurons with this many weights, the
computational costs would become huge. CNNs assume the input is a volume and instead of
‘squashing’ the pixels of the image into a vector it treats the images as a volume. The layers
of a convolutional neural network are also arranged in three dimensions (figure 5). Instead of
fully connecting all the neurons, in CNNs the neurons are only connected to a small part of the
layer before it. Every layer in the network transforms the input volume in a three dimensional
output volume, containing neural activations.

Figure 5: Schematic overview of a convolutional neural network. The neurons are arranged
in three dimensions and in each layer of the network an input volume is transformed into an
output volume of neuron activations. The red input layer represents the image, with a certain
width and height depending on the dimensions of the image and the depth could for example
be three (red, green and blue color channels) (Li et al. 2016).

Layers A simple CNN would have about 5 different types of layers. The input layer would
represent the input image, for simplicity, assume the input is a 28x28x1 (greyscale) image. A
convolutional layer computes dot products between their weights and a small part of the input
volume. Unlike ordinary neural networks, not all pixel values will be connected to all neurons in
the first layer. Instead, connections are made in small and localized regions of the input volume.
The size of these localized regions is called the local receptive field for the hidden neuron, for
example 5x5x1. The first neuron in the first hidden layer will be connected to a local receptive
field (figure 6). The second neuron in the first hidden layer will also be connected to a 5x5x1
field. If we shift the local receptive field 1 pixel to the right, we can see the local receptive field
for this second neuron (figure 7).

Figure 6: Local receptive field for the first neuron (Nielsen 2015).
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Figure 7: Local receptive field for the second neuron (Nielsen 2015).

This shifting can be done for each neuron in the first hidden layer. The amount of pixels by
which this local receptive field is slided is called the stride which could also be 2 or 3 for example.
All these connections between the local receptive field and the neuron represent dot products
between the values of the input volume and the weights of that connection. This 5x5x1 local
receptive field can be moved 23 times before the right side of the input volume is reached. The
receptive field can also move down 23 times in the same way as the horizontal shift. Therefore,
the first hidden layer consists of 24x24 neurons. Each neuron in a certain layer has shared
weights and biases, so for the i, jth neuron in the hidden layer the output of the activation
function will be

σ = f(b+
5∑

l=1

5∑
m=1

wl,mxi+l,j+m) (5)

where σ is te output, wl,m represents the 5x5x1 array of shared weights, b is the shared value
of the bias and xj+l,k+m is the input volume activation at the position i+ l, j +m. The output
function can be any activation function, for example the sigmoid function. Each neuron ‘looks’
at a different part of the input volume, but they have shared weights and biases. The advantage
of sharing parameters is that the total number of parameters is greatly reduced, which reduces
computational cost. This sharing means that each neuron in a hidden layer extracts the same
features from the input, only at different locations. Such a feature could for example be a
horizontal edge. Then each neuron looks at each local receptive field whether it detects a
horizontal edge. The hidden layer represents a new map, this map from input layer to hidden
layer is called a feature map. A convolutional layer often contains more than one feature map
(figure 8). With the setup described as in figure 8 the network can detect 3 different features
throughout the whole input volume, the output volume of this layer is a volume with size
24x24x3.

Another type of layer is called a pooling layer. In a pooling layer the input volume is down-
sampled along the spatial dimensions. It is often the case that pooling layers are periodically
inserted after convolutional layers in a network. Pooling layers reduce the amount of parame-
ters (and thus computational cost) and control overfitting. There are different types of pooling
layers, among them max pooling layers. Max pooling layers output the maximum activation
in a certain input region, for example a 2x2 region. When this kind of pooling is applied to
our 24x24x1 output layer we get a new map of 12x12x1 neurons. A schematic overview of max
pooling applied to each feature map as described above is given in figure 9.

Although it might look as if information is thrown away, pooling layers act as a way to distill
information. The pooling layer does not throw away information about whether a given feature
is found anywhere in the input volume, it only throws away the exact positional information.
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Figure 8: Convolutional layer with 3 feature maps. The input is a 28x28 greyscale image, which
is then transformed to three feature maps by the first hidden layer which consists of 3x24x24
neurons (Nielsen 2015).

Figure 9: The max pooling receives an input of 3x24x24 which is then transformed to a volume
of 3x12x12 (Nielsen 2015)

.

The positional information relative to other features is more important than the exact location,
this relative positional information is not thrown away. Another type of pooling which is
frequently used is L2 pooling. L2 pooling uses the square root of the sum of the squares of
the activations in a certain region. Like max pooling, L2 pooling distills information from the
previous layer.

The last layer(s) of a CNN are fully connected layers which work in the same way as the ordinary
neural networks described earlier. In the last fully connected layer class scores are computed
for each category.

4.2.1 Training a Convolutional Neural Network

Although the architecture of a CNN is quite different than that from an ordinary neural network,
it is still made out of simple neurons with weights and biases and the overall goal is the same.
Just like ordinary neural networks, this network needs to be trained using backpropagation.
When training a CNN the overall process is the same as in ordinary neural networks. Data
is propagated through the network and depending on the loss the parameters of the network
are updated. Backpropagation works slightly different in CNNs, the modifications are mainly
about the fact that CNNs do not have fully connected layers.

Transfer learning Training a CNN requires a lot of data and computational power. Fortu-
nately, it is not necessary to train a CNN from scratch and pre-trained networks are available.
Pre-trained networks are networks which are already trained on a large dataset, for example the
ImageNet dataset (Deng et al. 2009). These pre-trained networks already ‘learned’ the best
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parameters and weights in order to identify images as accurate as possible. Features extracted
by CNNs which are already trained are proven to be usable for other types of categorization
(Sharif Razavian et al. 2014). The idea of working this way is that a CNN can act as an extractor
of mid-level image representations, which can be pre-trained on one dataset and then re-used
on other datasets and tasks (Oquab et al. 2014). To train the network on a new dataset, the
last fully connected layers can be removed and trained on the new dataset. When the dataset
is medium sized part of the convolutional layers could be trained as well. Not training all the
layers of (deep) networks saves a lot of computational power and time.

4.3 Solar Wind Categorization Scheme

So far we have discussed neural networks to later apply them to solar observations to predict
space weather. In the current section we briefly digress to discuss different classifications of solar
wind. In order to predict the consequences space weather can have on Earth, it is important to
categorize the different types of solar plasma emitted by the Sun. There are multiple ways to
categorize solar wind. In this research four categories are used to distinguish different types of
solar wind. This categorization scheme is proposed by Xu & Borovsky (2015). The categories
are based on a three-parametric algebraic scheme based on measurements of solar wind proton
density and temperature, the solar wind speed and the solar wind magnetic field strength.
The measurements needed to apply this scheme are the proton number density np, the proton
temperature Tp, the magnetic field strength B and the solar wind speed vsw. An advantage of
this type of categorization is that it does not require measurements of heavy ions of the solar
wind, as opposed to other schemes.

The four plasma categories of the scheme are coronal-hole-origin plasma, streamer-belt-origin
plasma, sector-reversal-region plasma and ejecta. The categorization scheme was developed
by using collections of known solar wind plasma types, such as unperturbed coronal hole
plasma from constant velocity high-speed streams, published magnetic clouds and collected
pseudostreamers. This categorization scheme is applied to the OMNI2 dataset ranging from
1963 - 2013. This dataset contains hourly resolution solar wind magnetic field and plasma
data from multiple spacecrafts around the Sun. It also contains data about fluxes of energetic
protons, sunspot numbers and geomagnetic activity indices.

The scheme was assessed against the known collections of the plasma types described above.
The fraction of correctly categorized points for ejecta was 87.5%, for coronal-hole-origin plasma
96.9%, for streamer-belt-origin plasma 69.9% and for sector-reversal-region plasma 72.0%. Note
that no solar wind categorization is exact because there is a lack of knowledge about the exact
origins of solar wind from the Sun and of how the plasma origin behaves within the solar wind.
Still this categorization scheme is found to be quite accurate and an improvement compared to
other categorization schemes.
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5 Description of work

The previous sections addressed (training of) neural networks and the categorization scheme.
This section describes how we apply the pre-existing trained neural network to SOHO images
to predict space weather. We first describe the dataset used in this research.

5.1 Solar and Heliospheric Observatory Dataset

The used solar images in this project came from the EIT-171 instrument aboard the SOHO-
satellite. This instrument is used to obtain solar images of the Sun in the 171 Ångstrom
bandpass (Fe IX/X) (figure 10). Images captured by the EIT-17 instrument show the solar
corona at a temperature of approximately 1.3 million K. There are three other EIT instruments
which image the Sun in other selected bandpasses. The EIT instruments can image active
regions, coronal holes and a variety of other solar features. An overview of dates on which the
Sun emitted the four different solar plasmas was provided by dr. E. Camporeale. Based on these
dates the images were downloaded from the Virtual Solar Observatory. In this way a database
was created with solar images matching a certain solar plasma category. The original images
had a size of 512 x 512 pixels and were resized to a size 299x299 pixels since the inception V3
network was pre-trained on images with this resolution as well (Szegedy et al. 2016). Note that
only the channel with a bandpass of 171 Ångstrom is used in this research.

Figure 10: Two images captured by the EIT-171 instrument, taken almost two years apart. In
the right image more active regions and magnetic loops can be observed (Solar and Heliospheric
Observatory, 2017).

5.2 Architecture of the network

In this research a pre-trained network is applied to the solar images dataset. There are a lot
of pre-trained networks available, most of them trained on the ImageNet dataset (Deng et al.
2009). The Inception-V3 network is a CNN published in 2016 which is benchmarked on the
ILSVRC 2012 classification challenge validation set. The network achieved a 21.2% top-1 error
(Szegedy et al. 2016). Although this network is deep (it consists of 42 layers), the computational
costs are relatively low compared to other networks with a similar performance. They replaced
part of the convolutional layers with large filters (for example 5x5 or 7x7 filters) by other mini
networks with less parameters while keeping the input volume and output volume are the same.
A 5x5 convolution is 2.78 times more computationally expensive than a mini network with
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Table 1: Overview of the Inception-V3 network as proposed by Szegedy et al. (2016). The
output size of each module is the input size of each next one. Included are the inception
modules discussed in this section which reduce the amount of parameters and computational
costs.

Layer type: Input size:

conv 299x299x3

conv 149x149x32

conv padded 147x147x32

pool 147x147x64

conv 73x73x64

conv 71x71x80

conv 35x35x192

3x Inception module 35x35x288

5x Inception module 17x17x768

2x Inception module 8x8x1280

pool 8x8x2048

linear 1x1x2048

softmax 1x1x1000

smaller filters which can replace the 5x5 convolution. These mini networks are called inception
modules. An overview of the architecture is provided in table 1.

5.3 Training Methodology

Because of its simple interface and easy prototyping in this research Keras is used as application
programming interface (Chollet 2015). Keras is a deep learning library (written in python)
which runs on top of either Tensorflow or Theano. In this research TensorFlow is used as
backend. TensorFlow is an open source library used for machine learning (Abadi et al. 2015).
The InceptionV3 network with weights from the ImageNet could be loaded from the Keras
library.

Since this network was pre-trained on the ImageNet dataset it was not necessary to train all the
layers of the network. The fully connected layers (the last three layers in table 1) were removed
and replaced by the same types of layers. The only difference was that the last layer had a
different output size since there are two categories instead of 1000 categories. The remaining
(convolutional) layers were set to be non-trainable. In this way the network used the pre-trained
weights for the convolutional part of the network and the fully connected layers were trained
on our dataset. An overview of the code used to train the inception-V3 network is provided in
appendix A.

The dataset is preprocessed in the same way as the pre-training data, as proposed in the original
inception paper (Szegedy et al. 2015). The dataset was zero centered and resized to a range of
-1 to 1 (see appendix A). To examine how the network performs on each category the network
is tested on one category versus the other three categories. First, an experiment was done on a
small dataset to examine how the learning rate affects the loss and accuracy during the training
of the network. This is done on a sample of 150 images in total. 75 images were from one of the
four categories, the other 75 were picked from the other three other categories (25 images from
each of the other three categories). This experiment was done for all four categories with six
different learning rates ranging from 1× 10−5 and 1. The ratio between training and validation
data was 80% and 20% and the network was trained for 20 epochs.
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The learning rate at which the network performed best was used to do a final training of the
network with a larger amount of data. In the final training 540 images were used in both
categories in the same ratio as described above. Again, this was done for all four categories.
In this final training the network was trained for 30 epochs. All of the selected images for the
experiments were stored in numpy arrays containing the training set, the test set and the labels.
The code written to select the images (randomly) from the different categories can be found in
appendix B.
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6 Results

In this research the top-layers of the Inception-V3 network were trained on images captured by
the EIT-171 instrument in order to predict solar weather. Each category was tested against the
other three categories to measure how the network performs on each category. To determine
the learning rate at which the network performed best, the network was trained on a smaller
dataset with different learning rates. In appendix C the results of this experiment can be found.
It was observed that the network performed best with a learning rate of 1 × 10−5. With this
learning rate the loss is observed to be less than with the other learning rates. This is important
since the loss is a measure of error while training and testing the network.

In the final experiment a larger part of the dataset is used to train the network (540 im-
ages for both categories). It was found that the network performed best at classifying Ejecta.
Ejecta could be classified with a validation accuracy of 80% (figure 11). The network was not
able to distinguish Streamer-Belt-Origin Plasma from the other three categories, the validation
accuracy converged to a value of 51% (figure 13). Coronal-Hole-Origin Plasma and Sector-
Reversal-Region Plasma could be classified with a validation accuracy of 67% (figure 12) and
72% (figure 14) respectively. In figures 11-14 the losses are displayed as well. It can be observed
that the validation loss for the Ejecta category is lower than the other categories. This is as
expected since the loss is a measure of error and the accuracy with which ejecta is predicted is
the highest. The loss for the other categories converged to values ranging from 0.62 - 0.79 while
the loss of the Ejecta category converged to a value of 0.45.

In addition to the validation loss and accuracy also the training loss and accuracy where moni-
tored during the training of the network. The validation loss and accuracy can be compared to
the the training values to see how the network performs on new data versus the data on which
it is trained. In all the categories it can be seen that the training accuracy is higher than the
validation accuracy and that the training loss is lower than the validation loss.

Figure 11: Accuracy and loss of the experiment in which the ejecta category is classified against
the other three categories. The accuracy of the validation set converged to 80% and the cross
entropy loss converged to a value of 0.45.
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Figure 12: Accuracy and loss of the experiment in which the Coronal-Hole-Origin Plasma
category is classified against the other three categories. The accuracy of the validation set
converged to 67% and the cross entropy loss converged to a value of 0.62.

Figure 13: Accuracy and loss of the experiment in which the Streamer-Belt-Origin Plasma
category is classified against the other three categories. The accuracy of the validation set
converged to 51% and the cross entropy loss converged to a value of 0.79.
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Figure 14: Accuracy and loss of the experiment in which the Sector-Reversal-Region Plasma
category is classified against the other three categories. The accuracy of the validation set
converged to 72% and the cross entropy loss converged to a value of 0.62.
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7 Discussion

As observed in the results section, it is found that the training accuracy in all graphs is higher
than the validation accuracy. This strongly suggests that the network is overfitting on the
training data. Overfitting here means that the model is trained very well on predicting the
training data but cannot handle new data correctly. There are multiple factors which can
contribute to this overfitting. First of all, the network is pre-trained and there is a possibility
that this pre-trained network extracts the wrong features from the images for our goal. This
means that the network categorizes the training images based on the wrong features. The
network then learns patterns from the training set that are not applicable in the validation set.
This problem can possibly be solved by adding the fully connected layers earlier in the network
where more basic features are extracted.

Another aspect leading to overfitting might be the size of the used dataset, the dataset used
(with 540 images in each category) is small compared to similar researches (Krizhevsky et al.
2012). Also, The EIT-171 instrument captures images every six hours meaning that part of
the images in the dataset look very similar. The network may not have distilled the correct
information from the data it got because of the datasize. This might have affected the accuracy
in a negative way. In further research it would therefore possibly be better to use a larger
dataset and to make a selection with respect to timelapses. When a larger dataset is used it
is also possible to train convolutional parts of the network, which can lead to better feature
extraction.

In this research, for simplicity, only images from the EIT-171 instrument were used meaning
that only one channel was used in the images. The different types of categories can probably be
made more visible when all channels are used. Since the images with different wavelengths are
not captured at exactly the same time, it is needed to design a method where images of different
wavelengths are correctly added together into a more complete image. In our research Ejecta
could be predicted with an accuracy of 80% while for example the Streamer-Belt-Origin Plasma
could be predicted with an accuracy of 51%. Ejecta might be more visible in the 171 Ångstrom
wavelength than the other categories and the usage of only one channel might have caused the
difference in accuracies of different categories. It is a possibility that the other categories are
better visible at other wavelengths.

In addition, there are more variables that could be altered than only the learning rate when
training the network. Due to time constraints only the effects on altering the learning rate was
examined. Other variables, like the batch size (the number of images propagated through the
network, after which the weights are updated) also affect the performance of the network. There
are more variables that will not be discussed in this thesis. It is critical that these variables are
taken into account in further research.

Another important factor which influences the accuracy of the predictions is the categorization
scheme which is used. No categorization scheme is exact because of the lack of knowledge
about the solar wind origins. In this research a categorization scheme is used which showed to
be more accurate than other existing schemes, the fraction of correctly categorized points of this
scheme ranged from 96.9% to 69.9%. A more-detailed study of solar wind is needed to develop
a categorization scheme with a higher accuracy which also might lead to better accuracies in
predicting space weather.

Lastly, the solar cycle could influence predictions as well. The solar cycle is the approximately
11 year periodic change in the magnetic activity and the sun’s luminosity (Willson & Hudson
1991). The Sun can appear very different in different stages of the solar cycle, which can affect
the ability for the network to predict the correct category. The four categories used in this
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research might for example look different in these different solar cycle stages as well. When
applying a (new) larger dataset on a CNN it is important to take in account the effects the
solar cycle has on the images. To investigate the effect the solar cycle has on the outcomes of
training a CNN one could for example train the network on images of one stadium of the solar
cycle at a time. When it is found that the solar cycle has a significant effect on the outcomes
of training a network, the network has to be adapted to this effect or the categorization scheme
could be adapted to the effects the solar cycle has.
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8 Conclusions

In this research the top layers of the Inception-V3 network are trained on the solar images
captured by the EIT-171 instrument aboard the SOHO satellite. The network is trained on
four different categories of solar plasma: Ejecta, Coronal-Hole-Origin Plasma, Streamer-Belt-
Origin Plasma and Sector-Reversal-Region Plasma. Each of those categories is tested against
the other three categories. Ejecta could be classified with an accuracy of 80%, Coronal-Hole-
Origin Plasma with an accuracy of 67%, Streamer-Belt-Origin Plasma with an accuracy of 51%
and Sector-Reversal-Region Plasma with an accuracy of 72%. Although the accuracies are not
yet desirable for reliable space weather prediction, when the dataset size, the usage of only
one channel and the accuracies of the used categorization scheme are taken into account these
results are promising for further research.
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Appendices

Appendix A

Below an overview of the used code is provided. The full code of the Inception-V3 network kan be
found on https://github.com/fchollet/deep-learning-models/blob/master/inception_

v3.py (Chollet 2015).

# −∗− coding: utf−8 −∗−
”””
Implementation of the inception−V3 network.

@author: Marleen Rijksen
”””

# utilities
from keras.applications.inception v3 import InceptionV3
from keras.models import Model
from keras.utils import np utils
from keras.layers import Dense, GlobalAveragePooling2D
import numpy as np
import pandas

#=============================================
# Data preparation
#=============================================

# for reproducibility
np.random.seed(123)

def preprocess data( train images file , test images file , train labels file , test labels file ):

# load data from directory
train images = np.load( train images file )
test images = np.load( test images file )
train labels = np.load( train labels file )
test labels = np.load( test labels file )

# turn data into correct format
train images = train images.astype(’float64 ’ )
test images = test images.astype(’ float64 ’ )

# normalize and zero center the data
train images = np.divide(train images, 255)
test images = np.divide(test images, 255)
train images −= 0.5
test images −= 0.5
train images ∗= 2
test images ∗= 2
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# turn category list into binary class matrices
train labels = np utils . to categorical ( train labels , 4)
test labels = np utils . to categorical ( test labels , 4)

return train images, test images, train labels , test labels

#=============================================
# Finetuning the top layers of the Inception−V3 network
# Part of this code is inspired by the code as can be found on
# https://keras.io/applications
#=============================================

def inception v3(train images, test images, train labels , test labels ):

# load the inception model without top layers, pretrained on imagenet
conv layers = InceptionV3(weights=’imagenet’, include top=False)

# add pooling layer
x = conv layers.output
x = GlobalAveragePooling2D()(x)

# add fully connected layer
x = Dense(1024, activation=’relu’)(x)

# add fully connected layer with two classes with a softmax clasisfier
output layer = Dense(2, activation=’softmax’)(x)

# construct final model
final model = Model(input=conv layers.input, output=output layer)

# only train the top layers , freeze the convolutional layers
for layer in conv layers . layers :

layer . trainable = False

# compile the model
final model .compile(optimizer=’rmsprop’, loss=’categorical crossentropy’,

metrics=[’accuracy’])

# specify learning rate
lr = 0.00001

from keras.optimizers import RMSprop
model.compile(optimizer=RMSprop(lr=lr), loss=’categorical crossentropy’)

# specify number of epochs
nb epoch = 30

# train the network and save results in hist variable
hist = model.fit(train images, train labels , nb epoch=nb epoch, batch size=32,

validation data=(test images, test labels ))
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# write data to csv file
pandas.DataFrame(hist.history).to csv(”history”+”lr{}”.format(lr)+”.csv”)

return hist
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Appendix B

Below the code is provided to store random images from each category in numpy arrays. Also
an array of labels in the same order as the images is created. These arrays can be fed to the
network (appendix A).

# −∗− coding: utf−8 −∗−
”””
Created on Wed Apr 19 11:30:35 2017

@author: Laptop
”””

import os
from scipy.misc import imread, imresize
import random
import numpy as np
from numpy import array

#===================================================
# Functions
#===================================================

# resize images and store them in a list
def resize append(category, width, height):

image list = []

# first list all filenames in specified directory
filenames = os. listdir ( ’C:/Users/Laptop/documents/Bachelorproject/Dataset/Textfiles/eit 171/’

+ category)

for filename in filenames:

# read and resize images
im = imread(’C:/Users/Laptop/documents/Bachelorproject/Dataset/Textfiles/eit 171/’

+ category + ’/’ + filename)
im = imresize(im, (width, height))

# store image in list
image list .append(im)

# return list with numpy arrays of images in it
return image list

# pick random images from a list of images, and divide them in test/train data
def pick rand img(images, nb img, nb train):

train images = []
test images = []
count = 0
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for index in random.sample(range(len(images)), nb img):
if count < nb train:

train images.append(images[index])
else:

test images.append(images[index])
count +=1

return train images, test images

# make a list of all categories , corresponding to the list of images
def category list (nb cat, nb train, nb test ):

train labels = []
test labels = []
for i in range(nb cat):

train labels .extend([i for x in range(nb train)])
test labels .extend([i for x in range(nb test)])

return train labels , test labels

#===================================================
# Example of the usage of the functions described above, in this example 540 images
# of the coronal−hole−origin plasma are selected and 540 images from the other three
# categories are selected (180 from each of the three other categories ).
#===================================================

# specify image size in which the images have to be resized
width = 299
height = 299

# resize images in specific directory
strahl = resize append(’strahl ’ , width, height)
pseudo = resize append(’pseudo’, width, height)
lepping = resize append(’lepping’ , width, height)
coronal = resize append(’coronal’ , width, height)

# specify number of images for the category which is tested
nb img = 540
dif categories = 4

# take nb images / 3 images from each of the other three categories
nb img other = round(nb img / (dif categories − 1))

# define amount of training/test data
train part = 0.8
nb train = round(train part ∗ nb img)
nb train other = round(train part ∗ nb img other)

# divide data in train/test data for each category
coronal train , coronal test = pick rand img(coronal, nb img, nb train)
pseudo train, pseudo test = pick rand img(pseudo, nb img other, nb train other)
lepping train , lepping test = pick rand img(lepping, nb img other, nb train other)
strahl train , strahl test = pick rand img(strahl, nb img other, nb train other)
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# now add coronal data and all the ’other’ categories in one list
total train = coronal train + strahl train + pseudo train + lepping train
total test = coronal test + strahl test + pseudo test + lepping test

# make a list with the correct labels
nb test = 108
nb train = 432
nb cat = 2
train labels , test labels = category list (nb cat, nb train, nb test)

# store everything in numpy arrays
np.save(’ train images file .npy’, array( total train ))
np.save(’ test images file .npy’, array( total test ))
np.save(’ train labels file .npy’, array( train labels ))
np.save(’ test labels file .npy’, array( test labels ))
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Appendix C

In this appendix the results of the experiment with different learning rates is provided.
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