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ABSTRACT

The space-filter approach has been proved as a fundamental tool in studying turbulence in neutral fluids, providing the ability to analyze
scale-to-scale energy transfer in configuration space. It is well known that turbulence in plasma presents challenges different from neutral flu-
ids, especially when the scale of interest includes kinetic effects. The space-filter approach is still largely unexplored for kinetic plasma. Here,
we derive the space-filtered (or equivalently “coarse-grained”) equations in configuration space for a quasi-neutral hybrid-kinetic plasma
model, in which ions are fully kinetic and electrons are a neutralizing fluid. Different models and closures for the electron fluid are consid-
ered, including finite electron-inertia effects and full electrons’ pressure-tensor dynamics. Implications for the cascade of turbulent fluctua-
tions in real space depending on different approximations are discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012924

I. INTRODUCTION

Turbulent plasmas can be found in a wide range of space, astro-
physical, and laboratory systems. Understanding the properties of tur-
bulent fluctuations and of their cascade—which plasma processes
allow the transfer of energy from the large (“injection”) scales to the
small (“dissipative”) scales of a system and how this energy is eventu-
ally converted into heat and non-thermal particles—is a fundamental
step in order to understand the evolution of such systems (e.g., Refs.
1–4). In particular, turbulence in weakly collisional, magnetized plas-
mas is substantially different from turbulence in neutral fluids or in
collisional plasmas, as it opens up the stage to a large variety of physi-
cal regimes (see, e.g., Refs. 5–17). This includes turbulent phase-space
dynamics (“phase-space cascades”) and micro-instabilities (e.g.,
Refs. 18–28). A relevant aspect of plasma turbulence is the formation
of localized (“coherent”) structures such as current sheets and mag-
netic structures, where both observations and simulations reveal an
enhancement of kinetic features, from temperature anisotropy to par-
ticle energization and dissipation (e.g., Refs. 29–49). In this context,
increasing attention has been focused on the role of current sheets and
of magnetic reconnection as possibly mediating the energy transfer in
plasma turbulence, both in the framework of magneto-hydrodynamic

(MHD) models and in the kinetic regime.50–62 Therefore, it is of par-
ticular interest to develop a suitable theoretical framework that allows
such investigation within kinetic and reduced-kinetic models that are
widely adopted for kinetic-turbulence studies (see, e.g., Cerri et al.63

and references therein).
The filtering approach has been intensively employed in the

study of turbulence and scale-to-scale coupling in neutral fluids, at
least since the seminal work of Germano,64 and its subsequent use in
Large Eddy Simulations (LES) both in the context of neutral fluids65,66

andMHD67–71 (see, e.g., Miesch et al.72 for a review on LES techniques
in MHD). The approach is based on the following idea. First, a low-
pass spatial filter is applied to all quantities of interest. Filtered quanti-
ties are then employed to construct equations for the conservation of
density, momentum, and energy. Filtering is a linear operation (being
essentially a convolution), meaning that, e.g., the filter applied to a
product is not equal to the product of the filtered quantities. This
implies that, in constructing energy equations, quadratic terms give
rise to the so-called sub-grid terms. The sub-grid terms play a crucial
role in LES simulations, being the terms that lay below the resolved
scale of the simulation and that are parameterized according to a given
scheme (e.g., Ref. 73). In this work, however, we follow the opposite
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philosophy, where sub-grid terms are actually well resolved by the
computational grid. The rationale is that when the equation for total
filtered energy is written in conservative form, the sub-grid terms rep-
resent a source/sink term that couples energy flux transfer at a given
spatial scale. The interesting aspect of this approach, which has been
exploited in Camporeale et al.58 to study correlations between energy
dissipation and coherent structures, is that sub-grid terms are not
defined in Fourier but in configuration space. One can then easily eval-
uate and study how the scale-to-scale energy transfer is related to other
spatial-dependent quantities. However, with a few notable exceptions
(e.g., Refs. 27, 58, and 74–78), the filtering approach has not received
widespread attention in the plasma physics community. For instance,
in the context of 2.5D particle-in-cell (PIC) simulation of plasma
turbulence, this effort was undertaken by Yang et al.:75 by using the
space-filtered techniques for their analysis, they found a qualitative
coincidence between the spatial position of coherent structures and
those sites with enhanced energy transfer. Another important theoreti-
cal work is represented by Eyink,27 where the seminal idea to apply
this formalism to the entire phase space was exploited for the full
Vlasov–Maxwell–Landau equations. The present work is in between
the original application to the MHD description (e.g., Aluie79 and
references therein) and the whole (six-dimensional) phase-space anal-
ysis of a full kinetic description (e.g., Eyink27). In fact, here, we con-
sider a hybrid-kinetic model where the Vlasov equation for the ion
distribution function is coupled to a neutralizing electron fluid (where
different fluid models and a generalized Ohm’s law are allowed). On
the one hand, the hybrid approach will help to explicitly sort out and
interpret the effects that are due to the different electron-ion dynamics,
to different electron closures, and to their inertia, which would not be
of immediate interpretation otherwise. On the other hand, because of
the richness of the terms arising in the resulting filtered equations
already for this hybrid-kinetic case, for the sake of clearness of the
analysis and discussion in the present work, we will only consider the
spatial part of the equations. Nevertheless, the configuration-space
analysis will prove to be already able to highlight extremely relevant
differences and similarities between a fluid approach and a kinetic
treatment of the turbulent cascade. For instance, in this work, we pro-
vide a first formal explanation for the evidence that Hall-MHD and
hybrid-kinetics with isothermal, massless electrons seem to provide
similar results in terms of the turbulent cascade of magnetic-field fluc-
tuations reported by Papini et al.62 Therefore, an analysis of the whole
coarse-grained phase space, as done, e.g., in Eyink,27 and of the mecha-
nisms underlying the entire phase-space cascade of ion-entropy fluctu-
ations in hybrid-kinetic models (see, e.g., Cerri et al.23) is out of the
scope of the present study and is left for a future work.

The remainder of this paper is organized as follows. In Sec. II, we
present the equations of the general neutral hybrid-kinetic (NHK)
model, including different closures on the electron fluid. The energy
equations for the (forced) NHK model are provided and discussed in
Sec. II B. In Sec. III, we employ the so-called space-filtered techniques to
the general NHK model equations. The set of space-filtered energy
equations are provided and discussed in Sec. III B. The explicit set of
equations for different versions of the hybrid-kinetic model that are
often adopted in the literature is also provided in Appendixes A and B.
A straightforward generalization to the full kinetic case is given in
Appendix C. Finally, in Sec. IV, we discuss the relevance of this theoreti-
cal framework for turbulent systems and collisionless plasma dynamics.

II. NEUTRAL HYBRID-KINETIC (NHK) MODEL

The NHKmodel equations for a proton–electron plasma embed-
ded in a magnetic field B can be written in the following form:80

@ fi
@t
þ v � @ fi

@x
þ e

mi
E þ v

c
� B

� �
þ Fext

� �
� @ fi
@v
¼ 0; (1)

E ¼ �ue
c
� B� $ �Pe

en
�me

e
@ue
@t
þ ue � $ð Þue

� �
; (2)

@ B
@t
¼ �c$� E ; J ¼ c

4p
$� B; (3)

where fiðx; v; tÞ is the distribution function of the ions (protons) of
massmi at spatial position x and proton velocity v, e is the elementary
charge, c is the speed of light, and Fext is an external force per unit
mass. In the generalized Ohm’s law for the electric field E, Eq. (2),
quasi-neutrality ne ¼ ni ¼ n has been assumed, me is the electron
mass, and the electron flow ue is related to the ion flow ui and to the
current density J by ue ¼ ui � J=en. The above set of equations has to
be closed by defining the thermal model of the electron fluid, e.g., by
adopting a closure for the electron pressure tensor Pe or by providing
evolution equations for its components. Note that the form (2) of the
generalized Ohm’s law is equivalent to the non-approximated version
of its classical form (see Appendix D for details),

E ¼� ui
c
� Bþ J � B

ð1þ emÞenc
� $ � Pe � emPið Þ

ð1þ emÞen

þ em
1þ em

mi

e2n
@J
@t
þ $ � Jui þ uiJ �

JJ
en

� �� �
; (4)

where em ¼ me=mi � 1 is the (small) mass-ratio parameter.

A. Electron pressure equations and fluid closure

The NHK equations (1)–(3) must be completed by one or more
dynamic equations for the components of the electron pressure tensor,
Pe. In the following, we consider the coupling with two models for the
electron fluid:

(a) Isotropic, polytropic fluid. This is the simplest case of an
isotropic fluid, Pe;ij ¼ Pedij, with a polytropic closure (e.g.,
Refs. 81 and 82)

d
dt

Pe
nc

� �
¼ 0; (5)

where c is the polytropic index (e.g., c ¼ 1 for isothermal
electrons), and the total (Lagrangian) derivative above uses
the electron fluid velocity, i.e. d=dt ¼ @t þ ue � r. Therefore,
using continuity equation, it rewrites as83

@ Pe
@t
þ $ � Peueð Þ ¼ ð1� cÞPe $ � ueð Þ: (6)

(b) Fully anisotropic, adiabatic fluid. In this case, the full (a gyro-
tropic) pressure tensor dynamics is retained and an adiabatic
closure is adopted (e.g., Refs. 84 and 85),

@Pe

@t
þ $ � Peueð Þ ¼ � Pe � $ð Þue

� �sym
�Xce Pe � bf gsym; (7)

with the symmetrized terms, f…gsym, given by
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P � $ð Þu
� �sym

ij ¼ Pik@kuj þPjk@kui; (8)

P� bf gsymij ¼ �iklPjkbl þ �jklPikbl; (9)

where �ijk is the completely antisymmetric Levi-Civita symbol
and b ¼ B=jBj is the unit vector along the magnetic field
direction. Note that Eq. (7) reduces to the adiabatic version of
Eq. (6), i.e., with c ¼ 5=3, when an isotropic pressure tensor
is considered, Pe ¼ PeI, and the equation is projected onto
I=3. It also provides the double-adiabatic limit when a gyro-
tropic pressure tensor is considered, Pe ¼ pjjebbþ p?e
ðI � bbÞ, and the resulting equation is separately projected
along the magnetic field direction and perpendicular to it, i.e.
contracted with bb and with ðI � bbÞ=2, respectively (see,
e.g., Refs. 86 and 87). In particular, note that a gyrotropic
pressure tensor is also recovered in the limit of massless elec-
trons, since Eq. (7) requires that the condition Pe � bf gsym
¼ 0 is satisfied in such limit.88

Let us now examine the energetics of the NHKmodel equations.

B. Energy equations for the forced NHK system

The energy equations are derived using the moments of the
Vlasov equation, i.e., from the corresponding fluid equations. Here, we
interrupt the fluid hierarchy at the equation for the pressure tensor
components

@ .
@t
þ $ � .uið Þ ¼ 0; (10)

@ ð.uiÞ
@t

þ $ � .uiui þPið Þ ¼ e
mi

. E þ ui
c
� B

� �
þ .Fext; (11)

@Pi

@t
þ $ � Piui þQið Þ þ Pi � $ð Þui

� �sym ¼ Xci Pi � bf gsym; (12)

where . ¼ min is the (ion) mass density (see Appendix E for explicit
formulation with index and moment definitions). Note that as far as
the global energy equations are concerned, the closure and/or the
dynamic equation for the heat flux tensor is not relevant. In fact, it will
enter the equations as a total divergence of a heat flux vector, $ � q
(see later), and for a “closed” system, it will vanish when integrated
over the whole system domain. In this sense, the generalization of the
following equations to the case where both ions and electrons are fully
kinetic is straightforward (see Appendix C).

1. Ion bulk (kinetic) energy

By taking the scalar product between ui and the momentum
equation, and using the continuity equation, one finds the equation
for the ion bulk energy,

@ Eui
@t
þ $ � Euiuið Þ ¼ �ui � $ �Pið Þ þ .ui �

e
mi

E þ Fext

� �
; (13)

where Eui ¼ 1
2 .u

2
i is the ion bulk (or kinetic) energy density.

2. Ion internal (thermal) energy

By taking the trace of Eq. (12), i.e., by contracting the indices
(where a sum over repeated indices is understood), and multiplying by
1/2, one obtains the equation for the ion internal energy,

@ EPi

@t
þ $ � EPiui þ qið Þ ¼ �Pi : $ui; (14)

where the ion internal (or thermal) energy density is defined as EPi

¼ 1
2 tr½Pi� and qi is the ion heat-flux vector defined by

qi;k ¼ 1
2

P
j Qi;jjk.

3. Equivalent electron bulk (kinetic) energy

By taking the scalar product between enue and the generalized
Ohm’s law, Eq. (2), one obtains the equation for the electron bulk
energy,

@ Eue
@t
þ $ � Eueueð Þ ¼ �ue � $ �Peð Þ � enue � E; (15)

where Eue ¼ em 1
2 .u2e is the electron bulk (or kinetic) energy density

and it vanishes in the limit of massless electrons, em ! 0. In such
limit, this equation becomes a statement of the balance between the
work done on the electron fluid by the electric field and the electron
pressure forces (in the electrons’ reference frame89)

enue � E þ $ �Pe

en

� �
¼ 0; (16)

or, written in a way that may be useful later,

$ � Pe � ueð Þ ¼ Pe : $ue � enue � E: (17)

Note that this is true regardless of the assumptions on the pressure
tensor of the electron fluid, as long as it is massless.

4. Electron internal (thermal) energy

We now derive the equation for the electron internal energy for
the two cases:

(a) Isotropic, polytropic fluid. When the electron pressure tensor
is diagonal and isotropic, i.e., Pe;ij ¼ Pedij, its associated
internal energy is 1

2 tr½Pe� ¼ 3
2 Pe. Therefore, the correspond-

ing energy equation is just the electron pressure equation, Eq.
(6), multiplied by 3/2,

@ EPe
@t
þ $ � EPeueð Þ ¼ ð1� cÞEPe $ � ueð Þ; (18)

where here, EPe ¼ 3
2 Pe is the electron internal energy density.

(b) Fully anisotropic, adiabatic fluid. In this case, the energy
equation for the internal energy of the electron fluid is equiv-
alent to the one of the ions, Eq. (14), with q ¼ 0,

@ EPe

@t
þ $ � EPeueð Þ ¼ �Pe : $ue; (19)

with the electron internal energy density now defined as
EPe ¼ 1

2 tr½Pe�. Note that if Pe ¼ PeI, then Eq. (19) correctly
reduces to Eq. (18) with c ¼ 5=3.

5. Magnetic energy

By taking the scalar product between B and the Faraday equation,
and using the vector identity B � ð$�EÞ¼$ � ðE�BÞþE � ð$�BÞ,
one finds the equation for the ion bulk energy,
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@ EB
@t
þ $ � E � B

4p
c

� �
¼ �J � E; (20)

where EB ¼ B2=8p is the magnetic energy density. Note that in the
hybrid approximation, there is no energy equation for the electric
energy density, EE ¼ E2=8p, since the displacement current has been
neglected.90

C. The total energy density equation and energy
channels in the NHK model

Let us gather all the previous energy equations here for conve-
nience (and just rewriting few terms in a convenient way),

@Eui
@t
þ$ � EuiuiþPi �uið Þ¼ .ui �FextþPi : $uiþ enui �E; (21)

@ EPi

@t
þ $ � EPiui þ qið Þ ¼ �Pi : $ui; (22)

@ Eue
@t
þ $ � Eueue þPe � ueð Þ ¼ Pe : $ue � enue � E; (23)

@ EPe

@t
þ $ � EPeueð Þ ¼

ð1� cÞEPe $ � ueð Þ

�Pe : $ue

ðaÞ

ðbÞ;

8<: (24)

@ EB
@t
þ $ � E � B

4p
c

� �
¼ �enui � E þ enue � E; (25)

where we remind the reader the following definitions:

Eua ¼
1
2
manu

2
a; EPa ¼

1
2
tr Pa½ �; EB ¼

B2

8p
: (26)

Note that Eqs. (21)–(25) are well-known fundamental energy equa-
tions describing the energy channels of a kinetic plasma, and essen-
tially the same set of equations can be derived for the full-Vlasov
case.75,76,91,92 By summing up Eqs. (21)–(25), one obtains the equation
for the total energy density, E ¼ Eui þ EPi þ Eue þ EPe þ EB:

@ E
@t
þ $ � UE ¼ .ui � Fext þ I e; (27)

where we have defined the energy density flux, UE , as

UE ¼ Eui þ EPið Þui þPi � ui þ qi þ Eue þ EPeð Þue þPe � ue

þ E � B
4p

c: (28)

The additional I e term comes from the closure adopted for the elec-
tron fluid, and it is zero for an adiabatic fluid,

I e ¼

5
3
� c

� �
EPe $ � ueð Þ

0

ðaÞ

ðbÞ:

8>><>>: (29)

From the above equations, it is clear that when an isothermal closure
is adopted for the electron fluid, there cannot be an exact conservation
of energy even when no external injection is considered, Fext ¼ 0. In
fact, artificial energy loss or gain has to be included in the model in
order to keep the electrons isothermal when compressibility effects are
present (i.e., when $ � ue ¼ $ � ui þ ðJ=enÞ � $ ln ðnÞ 6¼ 0). This is
indeed a well-known feature in the astrophysics community, and it is

often attributed to instantaneous radiation cooling and heating (e.g.,
turbulent heating) that on average maintain the isothermal state.93–95

Finally, it is interesting to note the coupling between the different
energy densities in Eqs. (21)–(25), i.e., the so-called “energy channels.”
The thermal energy only couples to the kinetic energy via the
pressure-strain term, Pa : $ua (with some modifications when
explicit closure relations are adopted on the pressure), whereas the
magnetic energy is only coupled to the kinetic energy via the electric-
field work term, eanaua � E. Moreover, as it is expected in a collision-
less system, the ions’ and electrons’ energy channels never couple to
each other directly, but only through electromagnetic fields. This is
more evident if we take a spatial average over the entire spatial domain
under consideration, denoted by h…i, and we assume that the fluxes
are such that h$ � ð…Þi ¼ 0, as, e.g., for periodic or insulating bound-
ary conditions,75,76,92

@ hEuii
@t

¼ h.ui � Fexti þ hPi : $uii þ hji � Ei; (30)

@ hEPii
@t

¼ �hPi : $uii; (31)

@ hEuei
@t

¼ hPe : $uei þ hje � Ei; (32)

@ hEPei
@t

¼
ð1� cÞhEPe $ � ueð Þi

�hPe : $uei

ðaÞ

ðbÞ;

8<: (33)

@ hEBi
@t

¼ �hji � Ei � hje � Ei; (34)

where we have introduced the species’ current density, ja � eanua, for
brevity. Therefore, kinetic energy acts as the only mediator in the
transfer between the field and the thermal energies, and conversion
from electromagnetic energy to internal energy of the plasma has to
necessarily go through the generation of bulk flows.75,76,92 At the same
time, in a collisionless system, the energy transfer from one species to
another can only occur through field energy. Thus, in steady state con-
ditions, electromagnetic fields are the mediators that determine the
partition between the species’ energy cascades. However, the above
equations are volume averaged, and so they do not contain informa-
tion about the spatial regions to which the energy transfer is associated
or about scale-by-scale energy transfer and cross-scale interactions: in
order to investigate these properties, special techniques need to be
applied (see, e.g., Ref. 58). The space-filtered equations for the general
NHK model (1)–(3), with both type of closures, (5) or (7), are derived
in Sec. III, while the equations belonging to specific hybrid-kinetic
(HK) models are provided in Appendixes A and B. The full-kinetic
(FK) case is also provided in Appendix C.

III. THE SPACE-FILTERED APPROACH TO THE
GENERAL NHK MODEL

Following the procedure described in Camporeale et al.,58 we
now derive the corresponding filtered equations for the energy densi-
ties in the NHK system.

A. Filter definitions and properties

Let us consider a vector field, Vðx; tÞ. The corresponding space-
filtered field eV ðx; tÞ is defined as
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eV ðx; tÞ ¼ ð
X
Gðx � nÞVðn; tÞd3n ¼ Vðx; tÞ?GðxÞ; (35)

where X is the entire spatial domain, G is the filter function (e.g.,
Gaussian, top-hat, Fourier, etc.), and ? is the convolution operator
defined by Eq. (35). We also assume that the filtering operation com-
mutes with time and space differentiation,

fdV
dt
¼ deV

dt
; (36)

g$ � V ¼ $ � eV : (37)

Finally, we introduce the so-called Favre filter,96 defined as

bV ¼ f.Ve. : (38)

This type of density-weighted filtering operation was originally intro-
duced in hydrodynamic turbulence in order to avoid possible contami-
nation due to the viscous dynamics in the large-scales quantities, thus
allowing for the existence of an inertial-range cascade (“inviscid
criterion”97,98). Although in the present case we are analyzing formally
collisionless equations, i.e., without any effective viscosity or resistivity,
in the following, we will make use of this filtering procedure. A practi-
cal reason to follow such an approach is that the underlying idea of
this work is to later apply the equations obtained with this formalism
to actual numerical simulations, which will necessarily present some
artificial dissipation mechanisms (e.g., numerical smoothing, hyper-
dissipation operators, or even actual resistivity in the Ohm’s law—see,
e.g., Appendix B). Therefore, by using the Favre-filtering approach, we
should ensure the applicability to the analysis of hybrid-kinetic numer-
ical simulations.

B. Space-filtered energy equations for the forced NHK
system

We start by filtering the single energy equations, i.e., by considering
the energy conservation associated with those scales larger than a given
filtering scale ‘. In this process, we will also define certain sub-grid terms
arising from non-linear terms in the equation, such as, for instance,

g.uiui ¼ e. duiui ¼ e. bu ibu i þ T ðiÞuu; (39)

i.e., the sub-grid T ðiÞuu term is determined by the difference of the non-
linear terms

T ðiÞuu � e. duiui � bu ibu ið Þ; (40)

and represents the term that is associated with the ion-flow non-line-
arity at scales<‘.

1. Filtered ion bulk (kinetic) energy equation

By filtering the ion momentum equation (11) and using the
above definitions, one gets the filtered momentum equation in the fol-
lowing form:

@ ðe.buiÞ
@t

þ $ � e.buibu ið Þ ¼ �$ � T ðiÞuu þ eP i

� 	
þ e.bF ext

þ e
mi
e. bE þ bu i

c
� bB þ T ðiÞu�B� �

; (41)

where the sub-grid term related to the ion-flow non-linearity, T ðiÞuu, is
defined in (40), and we have introduced the sub-grid term associated
with the ui � B non-linearity,

T ðiÞu�B ¼
1
c

dui � B � bu i � bB
 �
: (42)

By taking the scalar product of (41) with bu i, the filtered equation for
the ion bulk energy density follows:75

@ bEui
@t
þ $ � bEuibu i

� 	
¼ e. bu i � bF ext þ

e
mi

bE þ T ðiÞu�B� 	� �
�bu i � $ � ePi þ T ðiÞuu

� 	h i
; (43)

where now the filtered ion bulk (kinetic) energy density is defined asbEui ¼ 1
2e.jbu ij2.

Note that the sub-grid terms above have an immediate physical
interpretation as, e.g., “turbulent” fields or stresses. If ‘ is a characteris-
tic scale of the filter defined in (35), then the first sub-gird term, T ðiÞuu,
is indeed the Reynolds stress associated with the ion-flow fluctuations
at scales <‘ (i.e., what contributes to the transport of ion-momentum
at scales ‘; e. bu i, due to the advection of sub-scale ion-momentum by
sub-scale ion-flow fluctuations,79 in analogy to its original definitions
within mean-field MHD99,100). Analogously, T ðiÞu�B is (minus) the
“MHD contribution” to the “turbulent” electric field,
��MHD � �T

ðiÞ
u�B, i.e., the electric field associated with the ui � B fluc-

tuations at scales <‘ (see Sec. III B 3). These terms, i.e., the “sub-scale
electromotive force” ��MHD and the “sub-scale Reynolds stress” T ðiÞuu
associated with the ion-flow fluctuations, are indeed analogous to
those present in the coarse-grained MHD equations (see, e.g., Aluie79

and references therein). Thus, another useful way to rewrite the equa-
tion above is

@ bEui
@t
þ $ � bEuibu i þ eP i þ T ðiÞuu

� 	
� bu i

h i
¼ e. bu i � bF ext þbj i � bE þ ePi : $bu i �bj i � ��MHD þ T

ðiÞ
uu : $bu i; (44)

where we have introduced the Favre-filtered ion current density,bj i � e
mi
e. bu i ¼ eenbui. Therefore, when considering a characteristic scale

‘ for the filters, the energy transfer of ions’ kinetic energy through that
scale is mediated by a combination of two effects. The first is repre-
sented by the interaction between the ion current density at scales
	 ‘; bji;‘, and the MHD contribution of the “turbulent” electric-field
fluctuations at scales<‘, ��MHD. The second effect relies on the interac-
tion of the strain tensor of the ion flow at scales 	 ‘, bR i;‘ � $bui, with
the turbulent ion-flow Reynolds stress at scales <‘, T ðiÞuu;‘. That is, the
net ion-kinetic energy density flux through a scale ‘, T ðiÞkin;‘, is given by
the combination of the above two terms: T ðiÞkin;‘ ¼ T

ðiÞ
uu;‘ : bRi;‘

�bji;‘ � ��MHD;‘. The strain-Reynolds stress interaction as a mechanism
for scale-to-scale energy transfer is indeed analogous to the one arising
in the coarse-grained MHD equations.78,79 The termbji;‘ � ��MHD;‘ rep-
resents the ionic contribution to the so-called “turbulent Ohmic dis-
sipation” due to the MHD sub-grid electromotive force associated
with the ui � B fluctuations, viz. bJ ‘ � ��MHD;‘, that would also be pre-
sent in the MHD description.78,79 As we will discuss in Secs. III B 3
and III C, however, in the hybrid-kinetic case, there are additional (i.e.,
non-MHD) contributions to the “sub-grid electric field” ��‘ , as well as
sub-grid terms arising from a two-fluid-like description (i.e., ions and
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electrons, as opposed to the single-fluid MHD treatment). This in turn
provides additional scale-to-scale energy transfer mechanisms
through, e.g., turbulent Ohmic dissipation and strain-Reynolds stress
interaction of the electron fluid (see Sec. IIIC). The term e.bu i � bF ext is
the rate of ion-kinetic energy density injected into the system by the
external forcing at scales 	 ‘. If the forcing acts only at scales ‘F and
Fext itself is a constant, then this term is a constant, eF;0, for all the
scales ‘ < ‘F . However, we caution that in a more general case, if Fext

varies at scales ‘F and the density is not a constant, then it has been
shown that eF is only approximately constant: while decaying at scales
‘ < ‘F , it is not exactly zero (see, e.g., Aluie

97). The other terms on the
first line of the right-hand side of (44) instead represent the energy
density flux between the different energy channels at scales 	 ‘. In
particular, the ion-kinetic energy is connected to the magnetic-field
energy channel through the interaction between the ion-current den-
sity and the electric field at scales 	 ‘,bji;‘ � bE‘, and to the ion-thermal
energy through the pressure-strain interaction at scales 	 ‘, ePi;‘ : bR i;‘

(see later). Also, note that for a deeper investigation of the pressure-
strain interaction at scales 	 ‘, one can further decompose the strain
tensor into different contributions, i.e., isotropic compression and
volume-preserving deformations and rotations, R ¼ �CI þDþW
(see, e.g., Refs. 75, 101, and 102).

2. Filtered ion internal (thermal) energy equation

We now apply a Favre filter on the ion pressure tensor equation,
so we obtain

@ bP i

@t
þ $ � dPiui þ bQ i

� 	
¼ � eP i � $


 �bui þ T Pirui

n osym

þ e
mic

ePi � bB þ T ðiÞP�Bn osym

; (45)

where we have introduced the sub-grid tensors associated with the
pressure-strain and pressure-magnetic ions’ non-linearities,103

fT Piruigij ¼ dPi;ik@kui;j � ePi;ik@kbu i;j; (46)

fT ðiÞP�Bgij ¼ dPi;jl�ilmBm � ePi;jl�ilmbBm: (47)

(In the above, sum over repeated indices is understood.) Then, multi-
plying (45) by 1/2 and taking its trace (i.e., projecting onto 1

2 I), one
obtains75

@ bEPi

@t
þr � dEPiui þ bqi� 	

¼ �eP i : rbu i � T ðiÞPru; (48)

where T ðiÞPru is defined as the trace of T Pirui ,

T ðiÞPru ¼ dPi;jk@kui;j � eP i;jk@kbu i;j; (49)

and we have used the fact that the right-hand side of (45) vanishes
when taking its trace.

As we can see, the interaction between the pressure tensor and
the strain tensor associated with scales 	 ‘, � ePi;‘ : bR i;‘, is providing
the (only) connection of the ion-thermal energy to another energy
channel, that is, with the ion-kinetic energy. At the same time, the
(only) transfer mechanism of ion-thermal energy density through

scale ‘ (i.e., the cascade rate of ion-internal energy) is provided by the
“turbulent” pressure-strain non-linearity at scales<‘; T ðiÞPru.

3. Filtered electric field and role of sub-grid
nonlinearities

By applying the Favre filter to the generalized Ohm’s law (2), we
obtain

bE ¼ � bue

c
� bB � T ðeÞu�B �mi

e
$ � ePee.

�me

e
1e. $ � e. buebue þ T ðeÞuu

� 	
þ @ ðe. bueÞ

@t

� �
; (50)

where the sub-grid terms are now related to the electron-flow and
ue � B non-linearities,

T ðeÞuu ¼ e. dueue � buebueð Þ; (51)

T ðeÞu�B ¼
1
c

due � B � bue � bB
 �
: (52)

Note that using the electron continuity equation and the properties
(36)–(38) of the filters, one can show that the relation dðue � $Þue
¼ 1e. ½$ � ðg.ueueÞ þ @tðf.ueÞ� � @tbue holds. Therefore, applying the
Favre filter to Eq. (2) is entirely equivalent to rewrite the electron
momentum equation in its conservative form [see (D1) and apply the
regular filter (35) on it]. It is interesting to note that the filtered electric
field at scales 	 ‘ in (50) has an explicit contribution from the filtered
fields at the same scales, plus a contribution �� from scales<‘,

bE ¼ � bue

c
� bB �mi

e
$ � ePee. � em

mi

e
1e. $ � e. buebueð Þ þ @ ðe. bueÞ

@t

� �
þ ��;

(53)

where we have defined �� as the sub-grid electric field,

�� � �T ðeÞu�B � em
mi

e
1e. $ � T ðeÞuu ; (54)

sometimes referred to as “turbulent” electric field, which is arising
from unresolved scales <‘ due to the nonlinear contributions. It is
worth to further decompose this sub-grid electric field into its “MHD
contribution” (i.e., due to the ui � B nonlinearities), “Hall contribu-
tion” (i.e., related to the J � B term), and “electron-inertia contribu-
tion” (i.e., associated with the ueue nonlinearity that is retained when
�m 6¼ 0),

�� ¼ ��MHD þ ��Hall þ ��de ;

with

��MHD ¼ �T
ðiÞ
u�B; (55)

��Hall ¼ �T J�B; (56)

��de ¼ �em
mi

e
1e. $ � T ðeÞuu ; (57)

where we have used the identity T ðeÞu�B ¼ T
ðiÞ
u�B þ T J�B in which the

J � B sub-grid term is defined as
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T J�B �
mi

ec
1e. gJ � B � eJ � eB
 �

: (58)

At this point, we can clearly see the difference between an MHD
treatment79 and the hybrid-kinetic case. In fact, in the coarse-
grained MHD equations, one would only obtain the sub-grid elec-
tromotive force associated with the ui � B fluctuations, Eq. (55). As
soon as we allow for a two-fluid-like description, the additional
terms in Eqs. (56) and (57) arise. In particular, the Hall sub-grid
electric field, ��Hall, accounts for the separation between the ion
dynamics and the magnetic-field dynamics (which is now frozen
into the electron-fluid dynamics) that occurs as the ion-inertial
scales are approached. This term should actually be captured also
in the Hall-MHD limit. The last term, ��de , arises from finite-inertia
effects of the electron fluid, em 6¼ 0, which now contributes to the
sub-grid electric field through (the divergence of) its sub-grid
Reynolds stress, T ðeÞuu . Therefore, this term could not be captured by
a MHD or Hall-MHD treatment. Note that in the massless-electron
limit, the only contributions to the “turbulent” electric field come
from the MHD and Hall terms, ��MHD and ��Hall, respectively. As we
will see later, in Sec. III C, this has a direct implication on the turbu-
lent energy transfer across scales. In particular, this formalism
seems to provide a proof of the assumption made in Hellinger
et al.104 that in a hybrid model with isothermal, massless electrons
this transfer can be approximated by its additive incompressive
contributions due to the MHD and Hall terms. If one is interested
to investigate in more detail the mechanisms underlying the
electron-inertia term, ��de , it could be further decomposed by using
the relation T ðeÞuu ¼ T

ðiÞ
uu þ T JJ � T ½Ju�, i.e.,

��de ¼ �em
mi

e
1e. $ � T ðiÞuu þ T JJ � T Ju½ �

� 	
; (59)

where the “current–current” and “current-flow” sub-grid terms are
given by

T JJ �
m2

i

e2
eJJ
.
�
eJeJe.

 !
; (60)

T Ju½ � �
mi

e
ðfJui þ fuiJÞ � ðeJeu i þ eu ieJ Þh i

; (61)

and they can be seen as turbulent Reynolds stresses associated with the
current–current and current-flow non-linearities that add to the tur-
bulent Reynolds stress of the ion flow.

4. Filtered electron bulk (kinetic) energy

By taking the scalar product of (50) with e
mi
e.bue, one obtains the

filtered equation for the equivalent electron bulk energy density,

@ bEue
@t
þ $ � bEuebue

� 	
¼ �bue � $ � ePe þ emT ðeÞuu

� 	h i
� e
mi
e. bue � bE þ T ðeÞu�B� 	

; (62)

or, equivalently, as

@ bEue
@t
þ $ � bEuebue þ ePe � bue

� 	
¼ ePe : $bue þbje � ðbE � ��Þ; (63)

where the filtered electron bulk energy density is defined as bEue ¼ em
1
2e.jbuej2 and we have introduced the Favre-filtered electron current

density,bje � � e
mi
e. bue ¼ �eenbue. Therefore, when considering a char-

acteristic scale ‘ for the filters, the energy transfer of electrons’ kinetic
energy through that scale is mediated by the interaction between the

electron current density at scales 	 ‘,bje;‘, and the “turbulent” electric-

field fluctuations at scales <‘, ��‘ , that is, T
ðeÞ
kin;‘ ¼ �bje;‘ � ��‘ . Also note

that it would be possible to rewrite (63) in an analogous way as done
for (44), so that the energy flux through scale ‘ is given by the combi-
nation of the electrons’ current density and the electrons’ strain tensor
at scales 	 ‘ interacting with the turbulent “MHD þ Hall” electric
field and with the turbulent electron-flow Reynolds stress, respectively,

i.e., T ðeÞkin;‘ ¼ �bje;‘ � ð��MHD;‘ þ ��Hall;‘Þ þ emT ðeÞuu;‘ : bRe;‘. The other two

terms instead represent the connection between the electrons’ kinetic
energy channel and the other energy channels at scales 	 ‘, i.e., to the
magnetic-field energy density (through the current-field interaction,bje;‘ � bE‘) and to the electrons’ thermal energy density (through the

pressure-strain interaction, ePe;‘ : bRe;‘).
In the limit of massless electrons, em ! 0, Eq. (62) reduces to the

filtered version of the balance equation in (16),

e
mi
e. bue � bE þmi

e
$ � ePee.

 !
¼ e

mi
e. bue � ��; (64)

where now �� ¼ �T ðeÞu�B ¼ ��MHD þ ��Hall. Note that this equation,
when space averaged, provides a sort of “vertex-conservation law”
through the “disappearing” electrons’ kinetic energy channel in the
limit em ! 0. Note that, as discussed in Sec. III B 3, even in this limit
there is a difference between the scale-to-scale transfer that is found in
coarse-grained MHD equations78,79 and the one operating in hybrid
models, which arises from the Hall term. Interestingly, a similar differ-
ence in the sub-grid turbulent electric field, and thus in the associated
scale-to-scale magnetic-energy transfer, can be found from Hall-MHD
equations. This may indeed explain why Hall-MHD and hybrid-
kinetics with isothermal, massless electrons seem to provide similar
results in terms of the turbulent cascade of magnetic-field fluctuations
(see, e.g., Papini et al.62) and why this transfer may be approximated
by the additive contributions due to the MHD and Hall terms in the
sub-grid electric field (see, e.g., Hellinger et al.;104 see also the discus-
sion associated with Fig. 2). Indeed, the relevance and nature of the
Hall electric-field fluctuations in possibly mediating the transition to a
so-called reconnection-mediated regime53,54,56,57 of sub-ion-scale tur-
bulent energy transfer were already pointed out by means of hybrid-
kinetic simulations in Cerri and Califano.56

5. Filtered electron internal (thermal) energy

We now apply the Favre filter also to the electron pressure equa-
tions, (6) or (7) depending on the closure adopted:

(a) Isotropic, polytropic fluid

@ bPe

@t
þ $ � dPeue
 �

¼ ð1� cÞ ePe $ � bueð Þ þ T ðeÞPru
h i

; (65)
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where T ðeÞPru is the sub-grid term associated with the
isotropic-compression contribution to the pressure-strain
electrons’ non-linearity, defined as

T ðeÞPru ¼ dPeð$ � ueÞ � ePeð$ � bueÞ: (66)

(b) Fully anisotropic, adiabatic fluid

@ bPe

@t
þ $ � dPeue


 �
¼� ePe � $


 �bue þ T ðeÞPru

n osym

þ e
mec

ePe � bB þ T ðeÞP�B

n osym

; (67)

where we have introduced the electrons counterpart of the
sub-grid terms related to the pressure-strain and pressure-
magnetic tensor non-linearity,

fT ðeÞPrugij ¼ dPe;ik@kue;j � ePe;ik@kbue;j; (68)

fT ðeÞP�Bgij ¼ �ilm dPe;jlBm � ePe;jlbBm

� 	
: (69)

From the above equations, the corresponding equations for the filtered
electron internal energy density follow:

@ bEPe

@t
þ $ � dEPeue

� 	
¼

ð1� cÞ 3
2
ePe $ � bueð Þ þ T ðeÞPru
h i

�ePe : $bue � T ðeÞPru;

8>><>>: (70)

where bEPe ¼ 1
2 tr½bPe� and the sub-grid term on the right-hand side of

(70–b) is defined as the trace of T ðeÞPru given in (68), i.e.,

T ðeÞPru ¼ tr½T ðeÞPru�.

6. Filtered magnetic energy

Note that the Favre-filtered Maxwell equations of the NHK
model are

@ bB
@t
¼ �c$� bE ; bJ ¼ c

4p
$� bB; (71)

the equation for the filtered magnetic energy, bEB ¼ jbBj2=8p, is readily
derived in the usual way,

@ bEB
@t
þ$ �

bE� bB
4p

c

� �
¼�bJ � bE ¼� e

mi
e.ðbu i�bueÞ � bE�T JE; (72)

where the sub-grid term associated with wave-particle interaction is
defined as

T JE ¼
X

a

eaðdnua � enbuaÞ
� �

� bE
¼ e

mi
ðc.ui � c.ueÞ � e. ðbu i � bueÞ
� 


� bE: (73)

[The actual sub-grid non-linearity here is given by T ðaÞnu ¼dnua � bnbua,

so that the decomposition bJ ¼ ebnðbu i � bueÞ þ T ðiÞnu � T
ðeÞ
nu holds. The

resulting sub-grid contribution to the rhs of Eq. (72) would then be

�ðT ðiÞnu � T
ðeÞ
nu Þ � bE , that we have called�T JE for brevity.]

Analogously to what has been done for the electric field in (53),
we can define a sub-grid or “turbulent” current density,

j� � 1e. e.J � e. eJ
 �
¼ T ðiÞnu � T

ðeÞ
nu ; (74)

so that bJ ¼ eJ þ j� ¼ bji þbje þ j� (note the different filters on J),

@ bEB
@t
þ $ �

bE � bB
4p

c

� �
¼ �ðeJ þ j�Þ � bE; (75)

and, if ‘ is the characteristic filtering scale, we can interpret the energy
transfer of magnetic energy through that scale as a result of the inter-
action between the “turbulent” currents at scales <‘; j�‘ , and the elec-

tric field at scales 	 ‘; bE‘, i.e., T ðmagÞ
‘ ¼ �j�‘ � bE‘ ¼ �T JE . On the

other hand, the term �eJ ‘ � bE‘ ¼ �ðPa
bja;‘Þ � bE‘ represents the

energy density flux within scales 	 ‘ that couples the magnetic energy
density channel to the species’ kinetic energy densities.

C. Filtered equation for the total energy density in NHK

Gathering all the previous equations for the filtering energy den-
sities (and just rewriting few terms in a convenient way), they read

@ bEui
@t
þ $ � bEuibu i þ eP i þ T ðiÞuu

� 	
� bui

h i
¼ e. bu i � bF ext þbj i � bE � ��MHD

� 	
þ ePi þ T ðiÞuu
� 	

: $bui; (76)

@ bEPi

@t
þ $ � dEPiui þ bqi� 	

¼ � ePi : $bui � T ðiÞPru; (77)

@ bEue
@t
þ $ � bEuebue þ ePe þ emT ðeÞuu

� 	
� bue

h i
¼ bje � bE � ��MHD � ��Hall

� 	
þ ePe þ emT ðeÞuu
� 	

: $bue; (78)

@ bEPe

@t
þ $ � dEPeue

� 	
¼

ð1� cÞ 3
2
ePe $ � bueð Þ þ TðeÞPru

h i
�ePe : $bue � T ðeÞPru

ðaÞ

ðbÞ;

8>><>>: (79)

@ bEB
@t
þ $ �

bE � bB
4p

c

� �
¼ � bji þbje þ j�

� 	
� bE; (80)

where we remind that bja � ea
mi
e. bua ¼ eaenbua is the species’ current

density (i.e., carrying the appropriate sign due to the species’ charge
within its definition). Then, summing up the above equations, one
obtains the equation for the total energy density,

@ bE
@t
þ $ � bUbE ¼ e. bu i � bF ext þ bI e þ bSð0Þsg þ bSðmeÞ

sg ; (81)

with the filtered total energy density and energy density flux defined as

bE ¼ bEui þ bEPi þ bEue þ bEPe þ bEB; (82)

bUbE ¼ bEuibu i þ dEPiui þ ðePi þ T ðiÞuuÞ � bu i þ bq i
þ bEuebue þ dEPeue þ ðePe þ emT ðeÞuu Þ � bue þ

bE � bB
4p

c; (83)
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respectively. With respect to its non-filtered version in (27), the filtered
equation for the total energy density shows additional terms. In fact,
on the right-hand side of (81), in addition to the filtered version of the
forcing injection, e. bu i � bF ext, and of the term taking into account for
the electron closure,

bI e ¼
5
3
� c

� �
3
2
ePeð$ � bueÞ

0

ðaÞ

ðbÞ;

8><>: (84)

now there are “source-like” (or “sink-like”) sub-grid term, bS sg, defined
as

bSð0Þsg ¼ bji � T ðiÞu�B þ T ðiÞuu : rbu i � T ðiÞPru � T JE þbje � T ðeÞu�B � T ðeÞPru;

(85)bSðmeÞ
sg ¼ emT ðeÞuu : rbue: (86)

where we have separated the base NHK contribution, bSð0Þsg , from the one
arising from finite-electron-inertia effects, bSðmeÞ

sg . Notice that above we
have used T ðeÞPru for brevity, but its definition actually depends on the
closure adopted for the electron fluid [cf. Eqs. (66), (68), and (70)],

T ðeÞPru ¼
1� cð Þ

3
2

dPeð$ � ueÞ � ePeð$ � bueÞ
h i

dPe : $ue � ePe : $bue

ðaÞ

ðbÞ;

8><>: (87)

whereas the definition of the other sub-grid terms T , that we report
here for completeness, is the same as given above,

T ðaÞuu ¼ e. duaua � buabuað Þ; (88)

T ið Þ
u�B ¼

1
c

dui � B � bu i � bB
 �
¼ ���MHD; (89)

T eð Þ
u�B ¼

1
c

due � B � bue � bB
 �
¼ � ��MHD þ ��Hall


 �
; (90)

T ðiÞPru ¼ dPi : $ui � eP i : $bu i; (91)

T JE ¼
e
mi
ðc.ui � e. bu iÞ � ðc.ue � e. bueÞ
� 


� bE ¼ j� � bE: (92)

Analogously to what was done in Eqs. (21)–(25), it may be inter-
esting to look at the space-averaged version of the filtered Eqs.
(76)–(80). By taking such space average and assuming again vanishing
fluxes at the boundaries, one obtains

@ hbEuii
@t

¼ he. bui � bF exti þ hbji � bEi þ hePi : $buii

�hbji � ��MHDi þ hT
ðiÞ
uu : $buii; (93)

@ hbEPii
@t

¼ �heP i : $bu ii � hT ðiÞPrui; (94)

@ hbEuei
@t

¼ hbje � bEi þ hePe : $buei

�hbje � ð��MHD þ ��HallÞi þ emhT ðeÞuu : $buei; (95)

@ hbEPei
@t

¼
ð1� cÞ 3

2
hePe $ � bueð Þi þ hT ðeÞPrui
h i

�hePe : $buei � hT ðeÞPrui

ðaÞ

ðbÞ;

8><>: (96)

@ hbEBi
@t

¼ �hbji � bEi � hbje � bEi � hj� � bEi: (97)

In Fig. 1, we show a schematic view of the link between different
energy channels in the NHK model as described by Eqs. (93)–(97),
when the electron-fluid description includes finite-inertia effects,
em 6¼ 0, and a complete pressure-tensor dynamics [case (b) in Eq.
(96); see also Chasapis et al.105 for a somewhat similar scheme,
although not explicit in scale transfer]. In this regard, we remind the
reader that similar analyses have previously obtained somewhat analo-
gous fundamental equations and decomposition (see, e.g., Yang et al.75

and Del Sarto and Pegoraro102) although without specializing to the
case of hybrid-kinetic models. In particular, by considering hybrid clo-
sures, here, we have also explicitly addressed the effects associated with
different electron closures (i.e., at the internal energy level) and those
effects associated with the mass ratio, em ¼ me=mi (i.e., on the non-
ideal turbulent electric field that mediates the energy transfer through
scales).

In this context, it is helpful to provide an explicit mention to the
limit of isothermal, massless electrons, c ¼ 1 and em ¼ 0 (see also
Appendix B). In this limit, the electron-thermal energy channel does
not evolve, @hbEPei=@t ¼ 0 (i.e., the electron thermal energy is kept
constant, which in turn formally requires the appearance of a source
term, hbI ei ¼ hePeð$ � bueÞi). Simultaneously, the electron-kinetic
energy also goes to zero in this limit. As a result, Eq. (95) effectively
becomes a sort of “vertex-conservation law” through the “zero-
measure” electron-kinetic energy channel, hbje � bEi þ hePeð$ � bueÞi
�hbje � ð��MHD þ ��HallÞi ¼ 0, that instantaneously affects the magnetic-
energy channel,

@ hbEBi
@t

���
em¼0;c¼1

¼hePeð$ �bueÞi�hbj i �bEi�hbje �ð��MHDþ��HallÞi�hj� �bEi:
(98)

A schematic view of the energy channels and transfer through scales
in this limit is provided in Fig. 2. This formalism also provides evi-
dence that, in a hybrid model with isothermal, massless electrons, the
turbulent energy transfer through scales could be approximated by its
additive incompressive contributions due to the MHD and Hall trans-
fer106–108 (as, for instance, it was assumed by Hellinger et al.104). In
fact, interestingly enough, a similar difference in the sub-grid turbulent
electric field (and thus in the associated scale-to-scale magnetic-energy
transfer) can be obtained from the Hall-MHD equations. This in turn
may explain why Hall-MHD and hybrid-kinetics with isothermal,
massless electrons have been shown to provide similar results in terms
of the turbulent cascade of magnetic-field fluctuations across the so-
called ion break (see, e.g., Papini et al.62). In this context, the relevance
and nature of the Hall electric-field fluctuations in possibly playing a
relevant role in the transition to a so-called reconnection-mediated
regime53,54,56,57 of sub-ion-scale turbulent energy transfer were already
pointed out by means of hybrid-kinetic simulations in Cerri and
Califano56).

D. Localized scale-to-scale energy transfer and the
direction of the cascade

Because the treatment of the space-filtered technique has been
kept general so far, the exact meaning of the quantities on the right-
hand side of the filtered equations slightly depends on the particular
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choice of the filter function G in Eq. (35). However, let us consider a
simple case in which G is a low-pass filter in Fourier space, with ‘�
being the characteristic scale below which the quantities are filtered
out. In such a case, the above equations not only tell us how the

different energy channels are coupled on the scales ‘ 	 ‘�, but they
also highlight how the energy is transferred across the scale ‘� through
the sub-grid terms (i.e., if the energy flux goes toward smaller or larger
scales). By considering various scales ‘� within the system, one can

FIG. 1. Global energy channels of the
NHK model: schematic cartoon of the
space-averaged filtered energy equations
in (93)–(97). The scale ‘ denotes the fil-
ter’s characteristic scale.

FIG. 2. Same as Fig. 1 for the limit of iso-
thermal, massless electrons, c ¼ 1 and
em ¼ 0 (see also Appendix B). This for-
malism shows that, in this limit, the turbu-
lent energy transfer across scales is
largely due to its additive incompressive
contributions from the MHD and Hall
transfer.
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obtain a map of how different terms contribute to the energy flux
through scales at each scale. Moreover, since the non-averaged sub-grid
terms responsible for such energy transfer keep their real-space depen-
dence, one can also investigate how localized this transfer is, as, e.g., its
correlation with current and vorticity sheets or with other magnetic and
flow structures. This is a very useful piece of information, as it enables
us to investigate the presence of direct and inverse cascades in kinetic
plasma turbulence and/or, by adopting the appropriate filters, also the
occurrence of cross-scale interactions (i.e., “non-local” in Fourier space).

IV. CONCLUSIONS

In this work, we have derived the space-filtered (or “coarse-
grained”) equations for a general class of quasi-neutral hybrid-kinetic
(NHK) models, including their explicit formulation for specific
hybrid-kinetic (HK) sub-models that are often adopted for the study
of kinetic turbulence in collisionless plasmas (e.g., Refs. 48 and
109–111), as well as for the full-kinetic (FK) case [for which large 3D
simulations have become recently possible (e.g., Refs. 112–114)]. This
theoretical framework indeed represents an extremely useful tool for
investigating the mechanisms underlying the energy transfer in plasma
turbulence. In fact, the space-filtered technique allows explicitly sepa-
rating the contribution of different “energy channels,” elucidating their
localization and correlation with “coherent structures” in real-space,
and highlighting the presence of both inverse and direct cascades, as
well as the behavior of the energy flux through scales [e.g., if the con-
stant cascade rate is a well-posed assumption, or if energy dissipation
is a multi-scale process rather than being localized at certain specific
scales (e.g., Refs. 115–118)].

Despite the intrinsic value of the space-filtered approach for tur-
bulence studies, it has not received widespread attention by the plasma
physics community: only recently, it has been considered in the context
of extended-fluid and/or of kinetic turbulence.27,58,74,75 Because of this
increasing (although underrated) attention to the filtered approach, we
believe that it is of interest to provide its explicit formulation for a wide
range of quasi-neutral hybrid-kinetic models that are commonly
adopted for the investigation of space and astrophysical plasma turbu-
lence at kinetic scales (see, e.g., Cerri et al.63 and references therein).
For instance, within this formalism we can indeed explain why Hall-
MHD and hybrid-kinetics with isothermal, massless electrons seem to
provide similar results in terms of the turbulent cascade of magnetic-
field fluctuations (see, e.g., Papini et al.62) and why this transfer may be
approximated by the additive contributions due to the MHD and Hall
terms in the sub-grid electric field (see, e.g., Hellinger et al.104). Indeed,
the relevance and nature of the Hall electric-field fluctuations in possi-
bly mediating the sub-ion-scale turbulent energy transfer in hybrid-
kinetic turbulence were already pointed out by Cerri and Califano56 in
the context of the so-called reconnection-mediated regime.53,54,56,57

Once again, we stress that the fundamental difference with a
Large-Eddy Simulation (LES) approach is that when the filtering scale
is well resolved within a simulation domain, the calculation of the sub-
grid source terms in (85)–(86) becomes straightforward. The analysis
of such terms in configuration space provides valuable information on
how and where the energy cascade and coupling takes place.
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APPENDIX A: EXPLICIT FORMULATION FOR THE
HYBRID-VLASOV-MAXWELL (HVM) MODEL IN THE
STUDY BY VALENTINI ET AL.82

The HVM model equations of Valentini et al.,82 including the
external forcing term given in Cerri et al.,119 read as Eqs. (1)–(3),
but with the following approximated generalized Ohm’s law:

ð1� d2e;0r2ÞE ¼ � ue
c
� B� $Pe

en
þ em

en
$ � DJ þPið Þ; (A1)

where d2e;0 ¼ �md2i;0 ¼ emmic2=4pe2n0 is the electron inertial length
computed with (homogeneous) background density, and we have
introduced the tensor

DJ � .ðuiui � ueueÞ ¼
mi

e
Jui þ uiJ �

JJ
en

� �
; (A2)

for brevity. This tensor is related to the (difference of the) Reynolds
stress tensor of the ion and electron flows, and it can be seen as a
Reynolds stress associated with the current-current and current-
flow fluctuations’ non-linearity. The scalar electron pressure, Pe, is
closed via polytropic relation, as in Eq. (5), and the r2E term can
be obtained by using the identity

@ J
@t
¼ c

4p
$� @ B

@t
¼ � c2

4p
$� $� E; (A3)

and then neglecting the $ � E by means of the quasi-neutrality
approximation, @tJ 
 c2r2E=4p. Note that this version of the gen-
eralized Ohm’s law can be obtained from (4) with the approxima-
tion ð1þ emÞ�1 ’ 1 and by neglecting inhomogeneities in front of
the Laplacian term, i.e., de ¼ emmic2=4pe2n ’ emmic2=4pe2n0
¼ de;0.

By following the same procedure as in Sec. II B, one easily
derives the energy equations for the HVM model, given the general-
ized Ohm’s law in (A1),

@ Eui
@t
þ $ � Euiui þPi � uið Þ ¼ .ui � Fext þ ji � E þPi : $ui; (A4)

@ EPi

@t
þ $ � EPiui þ qið Þ ¼ �Pi : $ui; (A5)

@ Eue
@t
þ $ � Eue þ Peð Þue½ � ¼ em.ue � Fext þ je � E þ Pe$ � ue

�emje � E þ em
dn
n
je � d2i;0r2E; (A6)

@ EPe
@t
þ $ � EPeueð Þ ¼ 1� cð ÞEPe$ � ue; (A7)

@ EB
@t
þ $ � E � B

4p
c

� �
¼ �je � E � ji � E; (A8)

where we have introduced the species’ current density, ja � eanua

and the density fluctuations, dn � n� n0. Note that the last term in
Eq. (A6) for the electron kinetic energy density is the result of the
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approximations made in (A1) with respect to its complete version
in (4). Namely, the extra �emje � E is a consequence of the approxi-
mation ð1þ emÞ�1 ’ 1, while the term proportional to dn=n comes
from the approximation de ’ de;0 (i.e., 1=n ’ 1=n0) in the
Laplacian term deriving from @J=@t.

The equation for the total energy density in HVM then reads

@ E
@t
þ $ �WE ¼ . ui þ emueð Þ � Fext þ

5
3
� c

� �
EPe $ � ueð Þ

� emje � 1� dn
n
d2i;0r2

� �
E; (A9)

where the total energy density flux, WE , is

WE ¼ Eui þ EPið Þui þPi � ui þ qi þ
5
3
EPeue þ

E � B
4p

c; (A10)

1. Space-filtered equations for HVM

Before presenting the space-filtered version of the energy equa-
tions, it is worth making some explicit considerations on the filtered
electric field from the generalized Ohm’s law adopted by the HVM
model.

a. Sub-grid (“turbulent”) electric field in HVM

By multiplying the generalized Ohm’s law in (A1) and applying
the filter to it, one obtain its filtered version, i.e.,

1� emdi;0r2

 �bE ¼ �bue � bB

c
�mi

e
$ePee.

þ em
mi

e
1e. $ � bDJ þ eP i

� 	
þ ��; (A11)

where we have defined bDJ ¼ e.ðbuibu i � buebueÞ and, analogously to
what was done in Sec. III B 3, the sub-grid (“turbulent”) electric field
as �� ¼ ��MHD þ ��Hallþ; ��de with

��MHD ¼ �T
ðiÞ
u�B; (A12)

��Hall ¼ �T J�B; (A13)

��de¼�em
mi

e
1e.$ � T ðeÞuu �T

ðiÞ
uu

� 	
¼�em

mi

e
1e.$ � T JJ�T Ju½ �


 �
: (A14)

Note that, with respect to (59), in HVM the electron-inertia con-
tribution �de effectively misses the contribution from the turbu-
lent (sub-grid) Reynolds stress associated with the ion-flow
fluctuations.

b. Filtered total energy equation for HVM

We now follow the same procedure as in Sec. III B to derive
the filtered version of the energy equations for the HVM model,

@ bEui
@t
þ $ � bEuibu i þ eP i þ T ðiÞuu

� 	
� bu i

h i
¼ e.bui � bF ext þ ePi : $bui þbji � bE þ T ðiÞuu : $bu i �bji � ��MHD; (A15)

@ bEPi

@t
þ $ � dEPiui þ bqi� 	

¼ �eP i : $bu i � T ðiÞPru; (A16)

@ bEue
@t
þ $ � bEue þ ePe

� 	bue þ emT ðeÞuu � bue

h i
¼ bje � bE þ ePe$ � bue þ eme.bue � bF ext

�bje � ��MHD þ ��Hall


 �
þ emT ðeÞuu : $bue

�embje � 1�
fd.e. di;0r2

 !bE � ��MHD � ��Hall � ��r2

" #
; (A17)

@ bEPe
@t
þ $ � dEPeue� 	

¼ ð1� cÞ eEPe r � bueð Þ þ T ðeÞPru
h i

; (A18)

@bEB
@t
þr �

bE � bB
4p

c

� �
¼ �bji � bE �bje � bE � j� � bE; (A19)

where bj i ¼ e
mi
e. bu i and we have introduced fd. ¼ e. � .0 and an

equivalent sub-grid electric field that arises from the Laplacian term
in the filtered electron-momentum equation [again, related to the
homogeneity approximation on the d2er2E term in (A1)], i.e.,

��r2 ¼
.0e. d2i;0r2T E; (A20)

with T E � ðf.E � e.eEÞ=e. ¼ bE � eE . Summing up Eqs. (A15)–(A19),
one obtains the filtered version of the total energy density equation,

@ bE
@t
þ $ � bWbE ¼ e. bu i þ embueð Þ � bF ext þ

5
3
� c

� �eEPe $ � bueð Þ

þ bSð0Þsg þ bSðmeÞ
sg þ bSðHVMÞ

sg ; (A21)

with bE ¼ bEui þ bEPi þ bEue þ bEPe þ bEB and
bWbE ¼ bEuibu i þ ePi þ T ðiÞuu

� 	
� bu i þ dEPiui þ bqi þ 5

3
bEuebue

þ emT ðeÞuu � bue þ dEPeue þ bE � bB4p
c; (A22)

while the sub-grid terms are given bybSð0Þsg ¼ �ðbji þbjeÞ � ��MHD �bje � ��Hall � j� � bE
þ T ðiÞuu : $bu i � T ðiÞPru þ ð1� cÞT ðeÞPru; (A23)bSðmeÞ

sg ¼ emT ðeÞuu : $bue; (A24)

bSðHVMÞ
sg ¼�embje � 1�

fd.e. di;0r2

 !bE���MHD���Hall���r2

" #
; (A25)

where the first two sub-grid terms, bSð0Þsg and bSðmeÞ
sg , are indeed the

same as the ones in (85)–(86) for a generic NHK model, while the

second term, bSðHVMÞ
sg , is a model-dependent term, i.e., specific of the

HVM model. Also note that this additional sub-grid term is strictly
related to finite-inertia effects in the HVM’s electron fluid and thus
it disappears in the massless electrons limit, em ! 0.

APPENDIX B: FORMULATION FOR MASSLESS
ELECTRONS AND RESISTIVE OHM’S LAW

It is useful to provide the space-filtered equations also in the
limit of massless electrons and a generalized Ohm’s law that
includes a resistive term,
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E ¼ � ui
c
� Bþ J � B

enc
� $Pe

en
þ gJ; (B1)

and a polytropic closure is adopted for the scalar electron pressure.
This version of the generalized Ohm’s law is indeed widely adopted
in numerical implementations of hybrid-kinetic models (e.g., Refs.
109, 110, and 120).

In this case, the total energy equation reads

@ E
@t
þ $ �WE ¼ .ui � Fext þ

5
3
� c

� �
EPe $ � ueð Þ � g je � J

¼ .ui � Fext þ
5
3
� c

� �
EPe $ � ueð Þ þ gji � J � gjJj2;

(B2)

with

bWbE ¼ Eui þ EPið Þui þPi � ui þ qi þ
5
3
EPeue þ

E � B
4p

c: (B3)

Note that, since je � J is not positive definite, the dissipative nature of
the resistive term in (B2) is not mathematically ensured. The space-
filtered version of the equation for the total energy density above is

@ bE
@t
þ $ � bWbE ¼ e. bui � bF ext þ

5
3
� c

� �eEPe $ � bueð Þ

� gjbJ j2 þ gbj i � bJ þ bSð0Þsg þ bSðgÞsg ; (B4)

where the sub-grid term bSð0Þsg corresponds to the one in (A23), while
the resistive contribution to the sub-grid term, bSðgÞsg , is given by

bSðgÞsg ¼ g j� � bJ ; (B5)

where we remind that j� ¼ bJ �bje �bji is the sub-grid (“turbulent”)
current density.

1. The Hall-MHD limit

Another approximation often employed in hybrid-kinetic sim-
ulations consists of adopting the Hall-MHD limit of the generalized
Ohm’s law (see, e.g., Ref. 121, and references therein),

E ¼ � ui
c
� Bþ J � B

enc
¼ � ue

c
� B; (B6)

i.e., the limit of infinite conductivity and cold, massless electron
fluid. In this case, all the terms containing the electron pressure or
the resistivity in the Eqs. (B2) and (B3) vanish, and we obtain a sim-
ple total energy equation,

@E
@t
þ$ � EuiþEPið ÞuiþPi �uiþqiþ

E�B
4p

c

� �
¼.ui �Fext: (B7)

Its filtered counterpart therefore reads

@ bE
@t
þ $ � bWbE ¼ e. bui � bF ext þ bSðH�MHDÞ

sg ; (B8)

where the flux and the sub-grid term are given by

bWbE ¼ bEuibu i þ dEuiui þ ðePi þ T ðiÞuuÞ � bu i þ bq i þ bE � bB4p
c; (B9)

and

bSðH�MHDÞ
sg ¼�ðbj iþbjeÞ ���MHD�bje ���Hall� j� �bEþT ðiÞuu :$bui�T ðiÞPru:

(B10)

APPENDIX C: FORMULATION FOR THE
FULL-KINETIC CASE

For the sake of completeness, we also report here the space-
filtered equations for a full-Vlasov plasma (see also Yang et al.75).
When the full-kinetic case is considered (neglecting the external
forcing for the sake of simplicity), the moments equations that have
been derived from the Vlasov equation for the ions in Sec. II B are
now holding for each species a with mass ma and charge ea, i.e.,

@ .a

@t
þ $ � .auað Þ ¼ 0; (C1)

@ ð.auaÞ
@t

þ $ � .auaua þPað Þ ¼ ea
ma

.a E þ ua

c
� B

� �
; (C2)

@Pa

@t
þ$ � PauaþQað Þþ Pa �$ð Þua

� �sym¼Xca Pa�bf gsym; (C3)

where .a ¼ mana is the species’ mass density, and Xca ¼ eaB=mac
its gyrofrequency. From these equations and from Maxwell’s equa-
tions (now including displacement current in the Amp�ere’s law),
the energy equations are readily derived,

@ Eua

@t
þ $ � Euaua þPa � uað Þ ¼ þPa : $ua þ eanaua � E; (C4)

@ EPa

@t
þ $ � EPaua þ qað Þ ¼ �Pa : $ua; (C5)

@ Eem
@t
þ $ � E � B

4p
c

� �
¼ �

X
a

eanaua

� �
� E; (C6)

where Eua ¼ manau2a=2; EPa ¼ tr½Pa�=2, and Eem ¼ ðE2 þ B2Þ=8p.
From the above, proceeding as in Sec. III B, the space-filtered equa-
tions for the full-kinetic case read

@bEua

@t
þ $ � bEuabua þ ePa þ T ðaÞuu

� 	
� bua

h i
¼ ePa þ T ðaÞuu

� 	
: $bua þbja � bE þ T ðaÞu�B

� 	
; (C7)

@ bEPa

@t
þ $ � dEPaua þ bqa

� 	
¼ �ePa : $bua � T ðaÞPru; (C8)

@ bE em
@t
þ $ �

bE � bB
4p

c

� �
¼ �

X
a

bja � bE þ T ðaÞJE

� 	
; (C9)

wherebja � ea
ma
e.a bua ¼ eaenabua is the current density of the a species,

and the sub-grid terms T are defined as

T ðaÞuu ¼ e.a duaua � buabuað Þ; (C10)

T að Þ
u�B ¼

1
c

dua � B � bua � bB
 �
; (C11)

T ðaÞPru ¼ dPa : $ua � ePa : $bua; (C12)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 082102 (2020); doi: 10.1063/5.0012924 27, 082102-13

Published under license by AIP Publishing

https://scitation.org/journal/php


T JE ¼
X

a

ea
ma

d.aua �e.a bua


 �� �
� bE ¼X

a

j�a � bE ¼X
a

T ðaÞJE ; (C13)

with j� ¼
P

a j
�
a the sub-grid (or “turbulent”) current density, as

defined in (74).

APPENDIX D: GENERALIZED OHM’S LAW IN THE
QUASI-NEUTRAL LIMIT: EQUIVALENCE
BETWEEN (2) AND (4)

We want to explicitly show that the two forms of the general-
ized Ohm’s law, Eqs. (2) and (4), are equivalent. In order to do
this, let us first consider the “classic” derivation of the generalized
Ohm’s law from the two-fluid momentum equations (e.g., Ref.
122),

@ ð.auaÞ
@t

þ $ � .auaua þPað Þ ¼
ea
ma

.a E þ ua

c
� B

� �
; (D1)

where .a ¼ mana, and ma and ea are the mass and the electric
charge of the species a. Multiplying (D1) by ea=ma and summing
over the species index a, one obtains

@

@t

X
a

eanaua

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼J

þ$ �
X

a

.auaua þ
X

a

ea
ma

Pa

� �

¼
X

a

e2ana

ma
E þ ua

c
� B

� �
; (D2)

which, for a quasi-neutral proton-electron plasma ne ¼ ni ¼ n,
rewrites as

@ J
@t
þ e$ � n uiui � ueueð Þ½ � ¼ �

e
me

$ � Pe � emPið Þ þ e2n
me
ð1þ emÞE

þ e2n
me

ue þ emui
c

� B

� �
: (D3)

By multiplying (D3) by me=½ð1þ emÞe2n� and using the relation
ue ¼ ui � J=en, one eventually obtains the generalized Ohm’s law
in (4),

E ¼ � ui
c
� Bþ J � B

ð1þ emÞenc
� $ � Pe � emPið Þ

ð1þ emÞen

þ em
1þ em

mi

e2n
@J
@t
þ $ � Jui þ uiJ �

JJ
en

� �� �
: (D4)

Now, let us consider the electron momentum equation in the
quasi-neutral limit, explicitly solving for E and using the electron
continuity equation in order to rewrite @tð.eueÞ þ $ � ð.eueueÞ
¼ .e½@tue þ ðue � $Þue�,

E ¼ �ue
c
� B� $ �Pe

en
�me

e
@ ue
@t
þ ue � $ð Þue

� �
; (D5)

which is exactly Eq. (2) of our NHK model. If we now substitute
ue ¼ ui � J=en into the ue � B and @tue terms, and use the ion
momentum equation in order to rewrite @tui, after some manipula-
tions we then obtain,

E ¼ �ui
c
� Bþ J � B

enc
� $ �Pe

en
� em E þ ui

c
� B� $ �Pi

en

�
� mi

e2n
@ J
@t
�mi

en
$ � n uiui � ueueð Þ½ �

�
; (D6)

which rewrites exactly as Eq. (D4). This eventually proves the
equivalence between using the form (2) or the form (4) of the gen-
eralized Ohm’s law.

APPENDIX E: FLUID EQUATIONS: EXPLICIT FORM
WITH INDEXES

Dropping the index i for “ions,” Eqs. (10)–(12) written by
components read

@ .
@t
þ @

@xi
.uið Þ ¼ 0; (E1)

@ ð.uiÞ
@t

þ @

@xj
.uiuj þPij

 �

¼ en Ei þ
1
c
�ijkujBk

� �
þ nFi; (E2)

@Pij

@t
þ @

@xk
Pijuk þ Qijk

 �

þPik
@ uj
@xk
þPjk

@ ui
@xk

¼ Xc �ilmPjlbm þ �jlmPilbm

 �

; (E3)

where �ilm is the Levi-Civita symbol and the moments of the distri-
bution function f are defined as usual,

. ¼ mn ¼ m
ðþ1
�1

f ðx; vÞ d3v; (E4)

. ui ¼ m
ðþ1
�1

vi f ðx;vÞ d3v; (E5)

Pij ¼ m
ðþ1
�1

wi wj f ðx;vÞ d3v; (E6)

Qijk ¼ m
ðþ1
�1

wi wj wk f ðx;vÞ d3v; (E7)

where w ¼ v� u is the random (thermal) component of the parti-
cle velocity.
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