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ABSTRACT

We perform fully kinetic particle-in-cell simulations of a hot plasma that expands radially in a cylindrical geometry.
The aim of the paper is to study the consequent development of the electron temperature anisotropy in an expanding
plasma flow as found in a collisionless stellar wind. Kinetic plasma theory and simulations have shown that the
electron temperature anisotropy is controlled by fluctuations driven by electromagnetic kinetic instabilities. In
this study, the temperature anisotropy is driven self-consistently by the expansion. While the expansion favors an
increase of parallel anisotropy (T‖ > T⊥), the onset of the fire-hose instability will tend to decrease it. We show the
results for supersonic, subsonic, and static expansion flows and suggest possible applications of the results for the
solar wind and other stellar winds.
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1. INTRODUCTION

The steady-state solution of the most simple dynamical
equations that describe the evolution of a stellar wind dates
back to the hydrodynamic model for the solar wind proposed by
Parker in 1958 (Parker 1958). Increasingly sophisticated models
have been developed to take into account the different observed
characteristics of the solar wind, and modeling has been based
on analytic, semianalytic, and simulational methods (Hollweg
2008). The magnetohydrodynamics (MHD) approach is widely
used for global modeling, but since it treats the plasma as a fluid
it does not include any effects due to non-Maxwellian particle
velocity distributions. More recently, kinetic simulations have
tried to take into account and explain features related to
the observed non-thermal distribution of particles in velocity
space (see, e.g., Landi & Pantellini 2003; Zouganelis et al. 2005).
The aim of such exospheric models is to provide a realistic
description of the wind dynamics that includes the transition
from a collision-dominated to a collisionless region. In doing
so, however, these models do not include the effect of plasma
instabilities and therefore cannot be regarded as completely self-
consistent.

For the solar wind, the importance of small-scale fluctuations,
associated with kinetic plasma instabilities generated by non-
Maxwellian particle distributions, is now widely recognized.
This has come about through a convergence of observations,
theory, and simulations. It is argued that many macroscopic
quantities that characterize the solar wind, such as the particle
temperature anisotropy or the electron heat flux, are always ob-
served with values that are bounded by the possible onset of
kinetic instabilities. The general argument is the following: the
expansion of the flow leads to a distortion of the distribution
function, which represents, for example, an increase in the tem-
perature anisotropy. The distortion of the distribution function
can be enough to trigger linear instability, i.e., there is some free
energy available that can create plasma fluctuations. Based on
simulations of the initial value problem for such instabilities, it
is evident that the fluctuations act to reduce the distortion of the
distribution function. In other words, the primary effect of the
fluctuations produced in the instability is to restore a stable (or

marginally stable) distribution function. In the case of a tem-
perature anisotropy driven by expansion, we might expect the
onset of instabilities associated with temperature anisotropy to
act as an upper limit for the anisotropy. This argument can be
broadly applied to many situations, such as formation of heat
flux, or indeed compression flows.

In the solar wind context, it is expected that the expansion of
the wind away from the Sun produces a parallel temperature
anisotropy T‖ > T⊥ (with reference to the magnetic field
direction) due to the conservation of adiabatic invariants. If one
adopts a fluid viewpoint (for instance, the “double-adiabatic”
theory (Chew et al. 1956, hereafter, CGL) that is often used
in this context), the anisotropy is not bounded and it should
increase indefinitely for increasing distance from the Sun.
However, it has been observed that the temperature anisotropy
is limited in value both for ions (Gary et al. 2001; Kasper et al.
2002; Hellinger et al. 2006; Matteini et al. 2007) and electrons
(Gary et al. 2005; Stverak et al. 2008), and it has been suggested
that this is due to the onset of kinetic instabilities, such as the fire
hose for T‖ > T⊥ and the mirror or ion–cyclotron instabilities
for T‖ < T⊥. Recently, several computer simulations have been
able to show that the kinetic instabilities are effectively able to
constrain the growth of temperature anisotropy. Those include
hybrid simulations for protons (Hellinger et al. 2003; Matteini
et al. 2006) and particle-in-cell (PIC) simulations for electrons
(Gary & Wang 1996; Gary et al. 2000; Gary & Nishimura 2003;
Camporeale & Burgess 2008).

Most simulations study the initial value problem for an
instability, starting with some initially unstable anisotropy value
and following the evolution of the system to marginal stability.
These simulations are usually interpreted in the framework of
the linear theory of the Vlasov–Maxwell equations. The linear
theory is developed for a non-expanding plasma embedded in
a uniform magnetic field, in a periodic Cartesian geometry. It
is this theory that is used to determine the marginal stability
boundary used to confirm the role of linear instabilities as
constraining the observed particle anisotropy. In other words, the
paucity of observed periods of large anisotropy is interpreted as
a consequence of fluctuations driven by anisotropy instabilities
which stop the plasma from reaching a high anisotropy state, or
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rapidly relaxing it if it does. The bounds of the anisotropy are
calculated using a non-expanding Cartesian geometry.

All the simulations performed so far do not include the
radial expansion of the wind in a completely consistent manner.
Because of the computational difficulties of simulating an
expanding plasma in a fixed frame of reference, simulations
using an “expanding box model” have been developed. In this
type of simulation, the idea is to use a Cartesian computational
domain, but to “stretch out” the domain as the plasma expands,
thus distorting the simulation box in at least one dimension. As
a consequence, the equations of motion have to be modified,
taking into account the inertial forces due to the expansion of
the box, and the coordinates must be continuously rescaled.
For plasma simulations, this method was initiated in Grappin
et al. (1993) for MHD, and it has been successively applied
to hybrid simulations (with fluid electrons and particle ions) in
Hellinger et al. (2003). Although the simulation results have
been relatively successful and shown to be consistent with
satellite observations (Matteini et al. 2007), the expanding box
model is still unable to treat the expansion consistently. It can
be argued that the rescaling of the box effectively produces
an unphysical mode coupling due to the allowed wave vectors
changing continuously over time. Energy that resides in certain
modes at one time is artificially channeled toward other modes,
as time evolves. The counterargument is that this mode evolution
is actually expected as precisely a result of the expansion.

In this paper we present the first fully kinetic PIC simulations,
with realistic proton–electron mass ratio, of a plasma that
expands radially in a decreasing magnetic field, in a fixed frame
of reference. The expansion is radial in a cylindrical geometry.
The scope of this work is to study and quantify in a more
consistent way the competition between the growth of parallel
anisotropy due to the expansion and the possible onset of kinetic
instabilities. The simulations presented in this paper are 2D-3V,
i.e., two-dimensional in space and three-dimensional in velocity
space. The magnetic field is also two dimensional, with axial
component zero. Clearly, this is just a first step toward more
challenging and realistic three-dimensional simulations. But,
we will show that even with the use of cylindrical geometry it
is already possible to capture the increase of anisotropy and the
subsequent development of kinetic instabilities. With the scales
currently feasible, our results are relevant to the evolution of the
electron particle distribution. We will show and compare three
different cases: static, subsonic, and supersonic flow.

The paper is organized as follows. The feasibility of running
the simulations has been greatly enhanced by using an implicit
scheme, and we discuss the main features of the algorithm in
Section 2. Section 3 is devoted to describe the details of the box
geometry and size, and the characteristic plasma timescale and
lengths. We show and discuss the results of different runs in
Section 4 and draw our conclusions in Section 5.

2. THE IMPLICIT CODE

The code used in this work is a fully kinetic, implicit, parallel,
electromagnetic PIC code called PARSEK. Its features are
described in detail in Markidis et al. (2009), but for completeness
we give here a brief description of the algorithm. We refer the
reader to, e.g., Pritchett (2003) or Hockney & Eastwood (1981)
for a more general tutorial on PIC techniques.

The algorithm is implicit in time both for the particle mover
and for the field solver, and it adopts the so-called implicit
moment method, introduced by Brackbill & Forslund (1982) and
successively re-elaborated in Vu & Brackbill (1992) and Ricci

et al. (2002). The following equations (in CGS units) for the
conservation of density and momentum are used to extrapolate
the values of the charge density ρ and the current density J at a
new time step:

ρi+1 − ρi

Δt
+ ∇ · Ji+ 1

2 = 0, (1)

Ji+1 − Ji

Δt
= q

m

(
ρiEi+1 +

Ji+ 1
2 × Bi

c
− ∇ · Pi

)
, (2)

where superscripts indicate time step, and all other symbols are
standard. The closure of Equations (1) and (2) is provided by
approximating the divergence of the pressure tensor at time
i + 1 with the value at time i, that is ∇ · Pi+1 ∼ ∇ · Pi .
From Equations (1) and (2) one can formulate ρi+1 and Ji+1

as functions of the electric field Ei+1. By using those relations
in Maxwell equations and after some algebra, one ends up with
a linear equation for Ei+1 as a function of only old quantities:

(cθΔt)2[−∇2Ei+1 − ∇∇ · (μiEi+1)] + (I + μi)Ei+1

= Ei + (cΔt)

(
∇ × Bi − 4π

c
Ĵi

)
− (cΔt)2∇4πρ̂i, (3)

where the following terms are defined:

Ĵi =
∑

s

Πi ·
[

Ji − qΔt

2m
∇ · Pi

]
, (4)

Πi =
[

I +
qΔt

2mc
I × Bi +

q2Δt2

4m2c2
(I · Bi)Bi

]/ [
1 +

q2Δt2Bi2

4m2c2

]
,

(5)

μi = Δt2

2
ωpsΠi , ωps = 4πqρi

m
, (6)

ρ̂ = ρ − (Δt)∇ · Ĵ, (7)

and the subscript s indicates the species.
Equation (3) is solved by a matrix-free generalized minimal

residual (GMRes) iterative linear solver (Saad & Schultz 1986).
Once the electric field is known at time i + 1, the magnetic field
B is advanced using Faraday’s law:

Bi+1 = Bi − cΔt∇ × Ei+i . (8)

The particle mover pushes the particles to a new position and
velocity according to the equations

xi+1 = xi + vi+ 1
2 Δt, (9)

vi+1 = vi +
qΔt

m

(
Ei+1 +

vi+ 1
2 × Bi+1

c

)
. (10)

Equations (9) and (10) are also solved iteratively with a
predictor–corrector technique. Finally, to ensure that the con-
tinuity equation is satisfied, the electric field must be corrected
with

Enew = Eold − ∇φ, ∇2φ = ∇ · Eold − 4πρ. (11)



1850 CAMPOREALE & BURGESS Vol. 710

Figure 1. Geometry of the computational box. Periodic boundary conditions
are applied on sides AB and CD. AEGD is the inner boundary region, EFGH

is the active region, and FBCH is the outer boundary region. Particles are
re-injected, with Maxwellian distribution, from sides AD and BC.

The main advantage of the implicit method over an explicit one
is that it enables a choice of time step Δt and a grid size Δx
that do not satisfy the Courant stability condition cΔt/Δx < 1.
This is instead replaced by the less stringent accuracy condition
veΔt/Δx < 1, where ve is the electron thermal velocity. The time
step is still small enough to resolve the electron gyromotion. Of
course, this benefit is paid for in terms of the computational
complexity of the algorithm; however, for many situations the
possibility of choosing a fairly large time step results in a positive
payoff for the total simulation runtime.

3. SIMULATION SETUP

We simulate an ion–electron plasma, with physical mass ratio,
i.e., mi/me = 1836. The plasma expands radially on a two-
dimensional disk, and the magnetic field is forced to have zero
axial component so it is a two-dimensional vector field. The
geometry of the box is shown in Figure 1. The grid is Cartesian
(x, y) and covers the trapezoid ABCD. The oblique sides AB
and DC form a 90◦ angle, and we apply periodic boundary
conditions on these sides. Therefore, a complete plane geometry
is recovered by applying three successive 90◦ rotations of the
box. This fourfold symmetry is used to reduce the computational
effort and does not affect the short wavelength fluctuations that
develop.

To ensure a correct periodicity along the azimuthal direction,
the particles that escape the boundary DC are re-injected from
the boundary AB and vice versa. In doing so, their trajectory
and velocities must be appropriately rotated by 90◦. We show
an example, in Figure 1, where a particle moving from point
1 to point 2 is re-injected at point 4, as if it was coming from
point 3. The vector velocity (vx, vy) on the plane must also be
rotated. The same argument applies to the electric and magnetic
fields on the boundary, where the x-component on the AB side is
imposed to match the y-component on the DC side, while the
y-component on AB must be equal to the x-component on AB,
with a change of sign (i.e., Ey on AB is equal to −Ex on
DC). The out-of-plane z-component is treated as periodic in the
standard way.

We define three different regions in the box: an inner boundary
region AEGD, an active region EFHG, and an outer boundary
region FBCH . Particles are initially loaded in all the three

regions, with a density that varies as 1/r , with r being the
distance from the origin (0, 0) (which is out of the box).
Except for the static case, they are initialized with an isotropic
Maxwellian distribution and with a radial mean velocity Vm.
The initial magnetic field on the plane is also radial, pointing
outward, and decreases in magnitude as 1/r . The initial electric
field is null. While particles are allowed to move anywhere in
the box ABCD, the field solver advances the fields only in the
active region. This effectively produces boundary conditions on
the arcs EG and FH , where any perturbation of the initial fields
is forced to smooth out.

The fact that we have a reservoir of particles in the inner
and outer boundary regions that move consistently with a static
electromagnetic field avoids spurious boundary effects on the
sides EG and FH . We are therefore mainly interested in
what happens inside the active region, which has consistent
boundary conditions for both particles and fields on all its sides.
The true boundaries of the computational box are of course
the sides AD and BC, which are sufficiently far from the
active region. Here, as we said, the electromagnetic field is
static; particles are allowed to escape, and they are re-injected
at every time step on both sides. The re-injection routine is
computationally expensive, but it mimics the existence of a
population of Maxwellian particles outside the box, with drift
velocity equal to Vm parallel to the magnetic field and with
density that again goes as 1/r .

The plasma beta for the species s is defined as usual as
βs = 8πnTs

B2 , where n is the density, T is the temperature, and
B is the magnetic field. It increases linearly with the distance
from the origin, and the initial values of n, T , B are chosen
so that β = 7.7 on the arc EG, and β = 15.4 on FH , for
both electrons and ions (that is T e = T i). These relatively high
values of beta allow the expanding plasma to reach quickly
a parallel anisotropy large enough to trigger the electron fire-
hose instability. According to the linear kinetic theory, the only
two parameters that control the growth rate of an anisotropy
instability are the parallel beta β‖ and the temperature ratio
T⊥/T‖. For the electrons, Camporeale & Burgess (2008) have
found that the relationship

T⊥
T‖

= 1 − 1.29

β0.98
‖e

(12)

is valid at the threshold of the instability.
Velocities are normalized to the light speed c, and the initial

thermal velocities for electrons and ions are respectively ve =
8 × 10−3, and vi = 1.9 × 10−4. The subsonic and supersonic
cases that we discuss in the next section are respectively for
Vm/ve = 0.625, and Vm/ve = 2.5, while for the static case
Vm = 0, but the initial electron anisotropy is T⊥/T‖ = 0.7. The
box has a maximum of 540 cells in the x-direction and 1170
in the y-direction. The active region has a radial extension of
Lωi/c = 1.25, where ωi is the ion plasma frequency. The total
box has a maximum radial extension of 4.22c/ωi . The box is
therefore sufficiently large to capture waves with wavenumber
kc/ωi greater than about 5. The time step is Δt = 0.05ωi

−1, and
the cell size is Δx = Δy = 0.0055cωi

−1, making the Courant
parameter cΔt/Δx equal to 9; the advantage of the implicit
scheme is evident.

4. RESULTS

In the CGL “double adiabatic” description of a plasma,

the quantities T⊥
B and T‖B2

n2 are constants. It follows that the
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temperature anisotropy varies as T‖/T⊥ ∼ n2/B3. In our
configuration, where density and magnetic field decrease as
1/r , T‖/T⊥ will grow linearly with the distance. Since we
start with an isotropic particle distribution, the anisotropy is
expected to increase until the local plasma parameters are such
that Equation (12) holds. At this point, the electron fire-hose
instability is triggered.

The linear dispersion relation of the electron fire-hose insta-
bility yields two solutions (Li & Habbal 2000). One branch is
a propagating slowly growing mode, with angle of propagation
ranging from 0◦ to about 70◦, and the other is a non-propagating
fast growing mode, with wavevector forming an angle between
about 30◦ and 90◦ with the magnetic field. The latter is generally
dominant, but it has been shown that depending on the angle
of propagation and the level of anisotropy, there are wavevec-
tors for which the growth rate of the two modes is comparable
(Camporeale & Burgess 2008).

4.1. Supersonic Case: Vm/ve = 2.5

In order to evaluate the role of instabilities in reducing the
electron temperature anisotropy in the expanding plasma, we
compare in this section two simulations. One has the setup
described in the previous section, i.e., the box is divided in
three regions, and the electromagnetic (EM) field is solved
only in the active region. The second simulation is identical
in all the parameters, except for the EM field that is kept static
through all the box. In this way, the differences between the
two runs are clearly due to feedback effects caused by self-
consistently generated electromagnetic fluctuations. We will
call the two simulations “self-consistent” and “test-particle”
runs. The focus of our interest will be the development of
electron parallel anisotropy. First, however, we show in Figure 2
the development at three successive times of the amplitude of
the magnetic field fluctuations δB/B0 (where δB = |B − B0|,
and B0 is the initial magnetic field) for the self-consistent run.
These images have been obtained by successive rotations of
the box. At time T ωi = 18 (top panel), there is not yet
any large-scale structure evident, and at that time there are
many modes at different orientation but comparable amplitude
present, creating an almost random patchwork of magnetic field
fluctuations. As time evolves (middle and bottom panels), a
structure of fluctuations aligned with the background magnetic
field emerges. This is consistent with the development of quasi-
perpendicular waves that at those times have superseded the
more parallel modes. By performing a Fourier transform in
time, we have indeed confirmed that the waves observed in
Figure 2 are non-propagating (or alternatively, moving very
slowly, compared to the total time of the simulation) in the
azimuthal direction. Movies of the evolution show that the
structures do not propagate azimuthally, but do have features
indicating that there is underlying convection outward in the
radial direction.

This is the first evidence that a plasma that increases its
electron temperature anisotropy in a self-consistent expansion
actually triggers a non-propagating fire-hose instability. This is
not a trivial result, because although predicted by the linear
kinetic theory in Cartesian geometry, this has never been
confirmed before by computer simulations for an expanding
plasma. As we discussed in the Introduction, what was already
known is that an instability would develop if the plasma was
starting with a sufficiently anisotropic temperature (Gary &
Nishimura 2003; Camporeale & Burgess 2008), while here we
started with an isotropic plasma and let the anisotropy grow

Figure 2. Supersonic case: δB/B0 at times T ωi = 18 (top), T ωi = 60 (middle),
and T ωi = 100 (bottom). The images are obtained by successive rotations of
the box.

(A color version of this figure is available in the online journal.)

self-consistently, due to the expansion. The physical behavior
here is much more complex than that for a non-flowing plasma
in a constant magnetic field. The magnetic fluctuations created
by the instability are now convected outward with the flow. This
effect helps to lower further the temperature anisotropy at larger
distances by increasing the particle scattering.

The top panel of Figure 3 shows the development of the
anisotropy at three different radial distances, where the temper-
atures are averaged over the azimuthal direction. The three solid
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Figure 3. Supersonic case. Top panel: anisotropy T‖/T⊥ at radial distances:
rωi/c = 1.50 (red), rωi/c = 1.86 (blue), and rωi/c = 2.22 (black). Solid
lines are for the self-consistent run, and dashed lines are for the test-particle run.
The dot-dashed line is the CGL prediction for rωi/c = 1.50. Bottom panel:
ratio of anisotropy for self-consistent over test-particle runs.

(A color version of this figure is available in the online journal.)

lines are for r = 1.50 (red), r = 1.86 (blue), and r = 2.22
(black), for the self-consistent run (r is normalized to the ion
inertial length cωi

−1). The corresponding dashed lines show the
development of the anisotropy at the same radial distances, for
the test-particle simulation. We have also included, for r = 1.50
only, the value of anisotropy predicted by the CGL theory (dot-
dashed line). The CGL prediction is in good agreement for
values of T‖/T⊥ less than about 2, but then it greatly overesti-
mates the anisotropy (also for the test-particle run). The effect
of the fire-hose instability in reducing the anisotropy at different
distances is clear, and it is not surprising that the anisotropy is
higher when the particles are not scattered by electromagnetic
fluctuations. We show in the bottom panel of Figure 3 the ratio
between the values of solid lines and dashed lines. This repre-
sents the reduction of anisotropy due to the presence of fluctu-
ations. One can see that this reduction stands between 20% and
40% depending on location and time.

We now want to quantify the effect of the instability by look-
ing separately at the parallel and perpendicular temperatures.
These are shown respectively in the top and bottom panels of
Figure 4, where the temperatures have been normalized to their
value at time T = 0. The colors are the same as for Figure 3,
and solid and dashed lines are again for self-consistent and
test-particle runs, respectively. Here we have also pointed, with
dotted vertical lines, the approximate time at which, for differ-
ent locations, the local anisotropy and plasma beta are such that
Equation (12) predicts a marginal stability state. In other words,
after the time denoted for each curve by the dotted line, the
plasma is unstable at that location. It has to be reminded, how-
ever, that Equation (12) has been derived from the linear theory
of plasmas in a homogeneous field and a periodic Cartesian ge-
ometry. It appears indeed that the curves are not sensitive to the
particular times denoted by the dotted lines. We will give two
possible explanations later. First, we comment on the general
features that emerge from Figure 4. Recall that the expansion
(without the effect of instabilities) should result in a monotonic
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Figure 4. Supersonic case: T‖ (top panel) and T⊥ (bottom panel). Solid lines are
for the self-consistent run, and dashed lines are for the test-particle run, at radial
distances: rωi/c = 1.50 (red), rωi/c = 1.86 (blue), and rωi/c = 2.22 (black).
The vertical dotted lines indicate the approximate time at which the condition
of Equation (12) holds, that is, the plasma is marginally stable.

(A color version of this figure is available in the online journal.)

decrease of T⊥ and a constant T‖. This is indeed what happens
for the dashed lines. At a certain time, the value of T⊥ ap-
proaches an asymptote, and this happens for successive times at
larger distances. This is because the perpendicular temperature
is inversely proportional to the distance traveled by the particles.
This distance will increase at the beginning of the simulation,
until it will reach the maximum possible value at each location,
equal to the distance from the inner boundary, and then will
stay constant. On the other hand, the parallel temperature stays
roughly constant, in the test-particle run, while the effect of the
instability is supposed to decrease it. Two comments are in or-
der. First, the stationary value reached by T⊥ is higher in the
self-consistent run, meaning that electromagnetic fluctuations
act to reduce the decrease of perpendicular temperature. How-
ever, no particular change is apparent in either T‖ or T⊥ when
the plasma becomes unstable. Second, the parallel temperature
suffers a mild decrease in the initial stage and then increases
at successive times, at larger distances. This is probably due to
the concurrent saturation of fire-hose modes that once damp-
ing tend to enhance the parallel temperature and the creation of
non-thermal features in the particle distribution function, as we
will show later. Since those modes are convected outward, the
increase in parallel fluctuation temperature moves outward too.

What emerges therefore is that the electromagnetic fluctua-
tions are responsible for slowing down the rate at which the
parallel anisotropy grows. However, we have been unable to
unequivocally identify the fire-hose instability as entirely re-
sponsible for this behavior. As we anticipated, there are, in our
view, two possible explanations. One is that the linear theory
result summarized in Equation (12) is not completely applicable
when the geometry is radial, and the magnetic field and density
are not uniform. This is a point that deserves a deeper investi-
gation, but it could be that the results developed over the years
for homogeneous plasma are not straightforwardly applicable
to more realistic situations (i.e., for non-constant magnetic field
and density, and not periodic structures in the radial direction).
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Figure 5. Supersonic case. Electron distribution function at times T ωi = 18
(top), T ωi = 60 (middle), and T ωi = 100 (bottom), in (v‖, v⊥) space. The
distributions are averaged over the whole active box.

(A color version of this figure is available in the online journal.)

A second possibility is that small noisy fluctuations, unrelated to
the fire-hose instability, could scatter the particles and decrease
the parallel anisotropy even before reaching a linearly unstable
condition. Moreover, the increase in parallel temperature at later
times seems to be an artificial effect due to the development of
non-Maxwellian features in the particle distribution function,
such as high energy tails. We show in Figure 5 the contour plot
of the electron distribution function, averaged in the whole ac-
tive region, at times T ωi = 18 (top panel), T ωi = 60 (middle),
and T ωi = 100 (bottom). One can note that as the perpendicular
temperature is reduced, the distribution becomes asymmetric in
the parallel direction. This is reflected in the increased paral-
lel temperature. The distribution function for states close to the
equilibrium is therefore non-bi-Maxwellian, and this is consis-
tent with many satellite observations.

4.2. Static Case: Vm = 0

In this section, we show the results of one simulation, where
the particles have no initial mean velocity (Vm = 0), but
the initial anisotropy T⊥/T‖ = 0.7. In this way, the fire-
hose instability is triggered in the whole active region from
the beginning of the simulation. Similar simulations, but for
a homogeneous plasma in a double periodic box, have been
performed in Camporeale & Burgess (2008). The purpose of this
run is to check that although the geometry is two dimensional in
space, and therefore some simplifying assumptions have been
made on the initial profile of magnetic field and density, and

Figure 6. Static case: δB/B0 at times T ωi = 18 (top), T ωi = 60 (middle), and
T ωi = 100 (bottom). The images are obtained by successive rotations of the
box.

(A color version of this figure is available in the online journal.)

on somehow artificial boundary conditions, the simulations are
still able to capture the fire-hose instability and the consequent
decrease of anisotropy. Moreover, with this run we will be able
once again to clearly identify the decisive role of the expansion.

We show in Figure 6 the development of δB/B0. Here again
the dominance of quasi-perpendicular modes at later times is
evident. The growth rate of the instability is now higher at
larger distances, where the plasma beta is higher. Since we
start from an unstable plasma, and the countereffect of the
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Figure 7. Static case. Top panel: anisotropy T‖/T⊥. Bottom panel: T‖ (solid
line) and T⊥ (dashed line).

expansion is now absent, the fluctuations reach amplitudes
slightly higher than those for the supersonic case (Figure 2). If
we look at the temperature anisotropy (Figure 7, top panel), and
at the parallel and perpendicular temperatures (Figure 7, bottom
panel, respectively in solid and dashed lines), we see that the
anisotropy decreases straight away from the beginning, but not
dramatically in value. The temperatures in Figure 7 are averaged
over the whole active box. The decrease of the anisotropy is
caused by the fact that the parallel temperature decreases faster
than the perpendicular one. At time T ωi ∼ 40, however, the
parallel temperature reaches a plateau, causing an increase of
the anisotropy, because the perpendicular temperature keeps
decreasing.

It interesting that the decrease of perpendicular temperature
seems to be related to the geometry and the initial profile of
magnetic field and density. Even if the initial mean velocity
is zero, the magnetic field profile causes a narrowing of the
pitch angle distribution for particle moving outward. Thus, the
initial conditions favor a distribution of particles that tend to
align their velocity with the magnetic field, at the expense of the
perpendicular velocity. From Figure 7 the parallel temperature
will decrease if the fire-hose instability is triggered, but it might
be that a more rapid decrease of the perpendicular temperature,
when the linear stage of the instability has saturated, will result
in a growth of anisotropy. Another interesting point is that the
fire-hose instability, in this configuration, is not as effective in
isotropizing the particles as is it would be for a non-cylindrical
geometry, with constant magnetic field. Indeed, it has been
shown in Camporeale & Burgess (2008) that in a Cartesian
geometry, an anisotropic plasma is forced by the fire-hose
instability to reduce its anisotropy to a state where the plasma
remains close to marginal stability.

4.3. Subsonic Case: Vm = 0.625

In the subsonic case, the interpretation of the results becomes
less straightforward because a vast proportion of electrons are
now counterpropagating (i.e., moving toward the origin). This
results in a non-locality of processes, where particles scattered at
one location can rapidly influence the development of instabili-
ties at other locations. Also, the convection of electromagnetic

Figure 8. Subsonic case: δB/B0 at times T ωi = 18 (top), T ωi = 60 (middle),
and T ωi = 100 (bottom). The images are obtained by successive rotations of
the box.

(A color version of this figure is available in the online journal.)

fluctuations toward outer regions is not as efficient as for the
supersonic case. Figure 8 shows the development of δB/B0, as
for the previous cases. The whole dynamics is clearly slower,
but the results are consistent with Figures 2 and 6, with again the
formation of structures aligned with the background magnetic
field.

The top panel of Figure 9 shows the development in time
of the temperature anisotropy (the format and legend are the
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Figure 9. Subsonic case. Top panel: anisotropy T‖/T⊥ at radial distances:
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panel: ratio of anisotropy for self-consistent over test-particle runs. Solid lines
are for the subsonic case, and dot-dashed lines are for the supersonic case, with
time rescaled by a factor of 4.

(A color version of this figure is available in the online journal.)

same as in Figure 3). These simulations are run again until
T ωi = 100, but the results should be compared with the results
for the supersonic case, obtained only until T ωi ∼ 25, since the
flow speed is 4 times slower. In the lower panel of Figure 9, we
show with solid line the ratio of anisotropy for self-consistent
run over the test-particle run. The dashed lines show the same
quantity for the supersonic case (i.e., bottom panel of Figure 3),
where now the time has been rescaled by a factor of 4. The
two runs, for subsonic and supersonic flows, are qualitatively
very similar, with the anisotropy reduced about 5%–15%. This
is a sign that the growth rate of the fire-hose instability for an
expanding plasma must also be dependent on the flow speed of
the plasma. Indeed, if this was not the case, the competition of
the expansion and the instability would have led to qualitatively
different results for the supersonic and subsonic cases.

5. CONCLUSIONS AND DISCUSSION

We have presented the results of PIC simulations of a
plasma expanding radially on a disk, where the magnetic field
and density profile decrease linearly with the inverse of the
distance. Although those simulations bear some simplification
and assumptions with respect to a realistic stellar wind, they have
the unique feature of treating self-consistently the effects due to
the expansion and the electromagnetic fluctuations. In fact, we
have used a fully kinetic PIC code, with physical ion-to-electron
mass ratio, and a computational box in a fixed frame of reference.
Hence, we think that the results of this paper, summarized in
this section, might be relevant for the understanding of a more
realistic scenario.

We have confirmed that the effect of electromagnetic fluc-
tuations is to decrease the temperature anisotropy: while the
expansion makes the parallel anisotropy grow, this increase is
slowed down by the presence of EM fluctuations. It is interest-
ing that the presence of fluctuations acts not only in decreasing
the parallel temperature, as it is expected, but it also reduces

the rate at which the perpendicular temperature decreases dur-
ing the expansion. The length and time scale constraints of our
simulations limit our results to the evolution of the electron
temperature anisotropy and its associated instabilities.

The simulations have confirmed the presence of quasi-
perpendicular waves, consistent with the development of
fire-hose instability. However, the feedback effect played by
fluctuations that counteract the expansion does not become more
evident, when the plasma becomes linearly unstable, but is rather
a continuous effect active since the beginning of the expansion.
On the other hand, we have verified that if the expansion would
not be present and the plasma would be injected starting with a
parallel anisotropy, this anisotropy would be reduced straight-
away. The fact that the results are not consistent with linear
theory predictions should be thought of as a consequence of
both the geometry and the fact that the plasma is drifting. Both
these effects are neglected in standard linear theory, and al-
though the approximation of a curved geometry with a planar
one might be justified at large distances from the Sun, the drift
should probably be taken into account. A rough estimate of the
importance of the drift can be made by using the characteris-
tic solar wind parameters listed in Bruno & Carbone (2005).
The leading modes of the electron fire-hose instability have a
wavevector that, depending on the anisotropy, ranges between
kc/ωi ∼ 20 and kc/ωi ∼ 60. This corresponds, at 1 AU, to
wavelengths of the order of about 10 km. The growth rate is a
function of the parallel beta and the anisotropy, but if we take as
a representative value of a fast growing mode a rate of 0.1 Ωe

(Ωe is the electron cyclotron frequency), then it would take ap-
proximately 5 × 10−2 s for the wave to grow by a factor of e.
The bulk velocity of the solar wind varies between 350 km s−1

(slow wind) and 600 km s−1 or more (fast wind), and the elec-
tron thermal velocity is between 2000 and 3000 km s−1. This
means that the electrons can travel a distance comparable, if
not greater, than the wavelength of the modes of interest, in a
fraction of the growth time.

Moreover, we have shown that the results for subsonic and
supersonic flows are qualitatively similar, and the dynamics of
the subsonic flow is just slower. This suggests that the growth
rate of the electron fire-hose instability must be a function of
the drift speed of the plasma. This is because the expansion
and the electromagnetic fluctuations play opposite role for the
development of the temperature anisotropy. If the instability
growth rate would not be a function of the drift speed, the
temperature anisotropy would have been reduced more rapidly
in the subsonic case, since here the increase of the anisotropy
due to the expansion is slower.

It has to be mentioned that another possible mechanism that
is thought to isotropize the distribution function is played by
collisions. It has been reported that there exists an observational
correlation between collisional age and electron temperature
anisotropy in the solar wind (Salem et al. 2003). Clearly, the
role of collisions is not included in our simulations.

This work was supported by STFC grant PP/E001424/1.
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