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In this paper we focus on the problem of assigning uncertainties to single-point predictions generated by a determin-
istic model that outputs a continuous variable. This problem applies to any state-of-the-art physics or engineering
models that have a computational cost that does not readily allow running ensembles and estimating the uncertainty
associated to single-point predictions. Essentially, we devise a method to easily transform a deterministic prediction
into a probabilistic one. We show that for doing so, one has to compromise between the accuracy and the reliability
(calibration) of such a probabilistic model. Hence, we introduce a cost function that encodes their trade-off, and we call
this new method ACCRUE (ACCurate and Reliable Uncertainty Estimate). We use the continuous rank probability
score to measure accuracy and we derive an analytic formula for the reliability, in the case of forecasts of continuous
scalar variables expressed in terms of Gaussian distributions. The new ACCRUE cost function is then used to esti-
mate the input-dependent variance, given a black-box “oracle” mean function, by solving a two-objective optimization
problem. The simple philosophy behind this strategy is that predictions based on the estimated variances should not
only be accurate, but also reliable (i.e., statistically consistent with observations). Conversely, early works based on the
minimization of classical cost functions, such as the negative log probability density, cannot simultaneously enforce
both accuracy and reliability. We show several examples both with synthetic data, where the underlying hidden noise
can accurately be recovered, and with large real-world datasets.
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1. INTRODUCTION

There is a growing consensus, across many fields and applications, that forecasts should have a probabilistic nature
[1]. This is particularly true in decision-making scenarios where cost-loss analyses are designed to take into account
the uncertainties associated to a given forecast [2,3]. Unfortunately, it is often the case that well established predictive
models are completeley deterministic and thus provide single-point estimates only. For example, in engineering and
applied physics, models often rely on computer simulations. A typical strategy to assign confidence intervals to
deterministic predictions is to perform ensemble forecasting, that is, to repeat the same simulation with slightly
different setup (i.e., free parameters, and initial or boundary conditions) [4,5]. However, this is rather expensive and
it often requires a trade-off between computational cost and accuracy of the model, especially when there is a need
for real-time predictions. Likewise, the most successful applications in machine learning techniques have focused on
estimating target variables, with less emphasis on the estimation of the uncertainty of the prediction. Only recently,
calibrated uncertainty for reliable predictions has become one of the central topics of machine learning research
[6–11].

In this paper we focus on the problem of assigning uncertainties to single-point predictions, with a particular
emphasis on the requirement of calibration. When dealing with a probabilistic forecast, calibration is as important
as accuracy. Calibration, also known as reliability (for instance, in the meteorological literature), is the requirement
that the probabilities should give an estimate of the expected frequencies of the event occurring, that is, a statistical
consistency between probabilistic predictions and observations [12,13].
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We restrict our attention to predictive models that output a scalar continuous variable, and whose uncertainties
are in general input-dependent. For the sake of simplicity, and for its widespread use, we assume that the probabilistic
forecast that we want to generate is in the form of a Gaussian distribution. Hence, the problem can be cast in terms of
the estimation of the input-dependent variance associated to a normal distribution centered around forecasted values
provided by an oracle.

In the machine learning community, elegant and practical ways of deriving uncertainties based on flexible proba-
bilistic models are well established, either based on standard and Bayesian neural networks [6,8,14–17], or Gaussian
Processes (GPs) [18]. However, it is important to emphasize that while in the classical heteroskedastic regression
problem, one is interested in learning simultaneously the mean functionf(x) and the varianceσ2(x), here we as-
sume that the mean function is provided by a black-box model (for instance, a physics simulation) that cannot easily
be improved; hence the whole attention is focused on the variance estimation. This is realistic in several applied fields,
where decades of work have resulted in very accurate physics-based models that, however, suffer the drawback of
being completely deterministic. Hence, we decouple the problem of learning mean function and variance, focusing
solely on the latter. Also, it is important to keep in mind that we aim at estimating the variance using a single mean
function (oracle prediction), and not an ensemble.

1.1 Summary of Contributions and Novelty

The task of generating uncertainties associated with black-box predictions, thus transforming a deterministic model
into a probabilistic one, and simultaneously ensuring that such uncertainties are both accurate and calibrated is
novel. The closest early works in the machine learning literature that are worth mentioning are concerned with post-
processing calibration. In that case, a model outputs probabilistic predictions that are not well-calibrated and the
task is to recalibrate these outputs by deriving a function[0, 1] → [0, 1] that maps the original probabilities to new,
well-calibrated probabilities. Recalibration has been studied extensively in the context of classification, with methods
such as Platt scaling [19], isotonic regression [20], and temperature scaling [7]. Applications to regression are less
studied. A recent work is [21], where isotonic regression is used to map the predicted cumulative distribution function
of a continuous target variable to the observed one, effectively recalibrating the prediction. This approach was later
criticized for not being able to distinguish between informative and noninformative uncertainty predictions [22] and
for not being able to ensure calibration for a specific prediction (but only in an average sense) [23]. Finally, a relevant
approach has recently been proposed in [24], building on the original idea of [25] of designing a neural network
that outputs simultaneously mean and variance of a Gaussian distribution, by minimizing a proper score, namely
the negative log likelihood of the predictive distribution. Reference [24] points out the importance of calibration of
probabilistic models, even though in that work calibration is not explicitly enforced.

Overall, it appears that none of the previous works has recognized that calibration is only one aspect of a two-
objective optimization problem. In fact, we will demonstrate that post-processing calibration (reliability) is competing
with accuracy (sharpness) and therefore one must seek for the optimal trade-off between these two equally important
qualities of a probabilistic forecast.

Our method is very general and does not depend on any particular choice for the black-box model that predicts
the output targets (which indeed is not even required; all that is needed are the errors between predictions and real
targets). The philosophy is to introduce a cost function which encodes a trade-off between the accuracy and the
reliability of a probabilistic forecast. Assessing the goodness of a forecast through proper scores, such as the negative
log probability density, or the continuous rank probability score, is a common practice in many applications, such
as weather predictions [26,27]. Also, the notion that a probabilistic forecast should be well-calibrated, or statistically
consistent with observations, has been discussed at length in the atmospheric science literature [28,29]. However, the
basic idea that these two metrics (accuracy and reliability) can be combined to estimate the empirical variance from
a sample of observations, and possibly to reconstruct the underlying noise as a function of the inputs, has never been
proposed. Moreover, as we will discuss, the two metrics are competing, when interpreted as functions of the variance
only. Hence, this gives rise to a two-objective optimization problem, where one is interested in achieving a good
trade-off between these two properties.

Our main contributions are the introduction of the reliability score (RS), that measures the discrepancy between
empirical and ideal calibration, and the Accurate and Reliable Uncertainty Estimate (ACCRUE) cost function. We
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show that for a Gaussian distribution the RS has a simple analytical formula. The accuracy part of the ACCRUE cost
function is measured by means of the continuous rank probability score, that we argue has better properties than the
more standard negative log probability density.

The paper is organized as follows. We first introduce the negative logarithm of the probability density and the
continuous rank probability score as scores for accuracy. We then comment on the reliability and how to construct
a reliability diagram for continuous probabilistic forecast, and we show that accuracy does not imply reliability and
indeed the two metrics are competing. We then introduce a new score to measure reliability for Gaussian distributions
and the ACCRUE score. Finally, we show how the new score can be used to estimate uncertainty both in toy and
real-world examples.

2. SCORING RULES FOR PROBABILISTIC FORECAST

The problem of how to assess a probabilistic forecast has been studied at length in the literature (see, e.g., [1,30]).
Here, we focus on the forecast of a continuous real variable and its associated uncertainty. In this section, we briefly
revise two popular choices of so-called scoring rules for probabilistic predictions (albeit possibly popularized in
different scientific communities): the negative logarithm of the probability density (NLPD), and the continuous rank
probability score (CRPS). Although in the following we opt to use CRPS for our experiments, equal considerations
apply for NLPD.

In the case of Gaussian distributions a forecast is simply given by the mean valueµ and the varianceσ2. NLPD
is defined as

NLPD(ε, σ) =
logσ2

2
+

ε2

2σ2
+

log2π

2
, (1)

where we defineε = yo − µ as the error between a given observationyo and the corresponding predictionµ. CRPS
is a generalization of the well-known Brier score [31], used to assess the probabilistic forecast of continuous scalar
variables, when the forecast is given in terms of a probability density function, or its cumulative distribution. CRPS
is defined as

CRPS=
∫ ∞

−∞
[C(y)−H(y − yo)]2dy, (2)

whereC(y) is the cumulative distribution (cdf) of the forecast,H(y) is the Heaviside function, andyo is the true
(observed) value of the forecasted variable. The CRPS for Gaussian forecasts can be calculated analytically [4] as

CRPS(ε, σ) = σ
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2σ2

)
− 1√

π

]
. (3)

Several interesting properties of the CRPS have been studied in the literature. Its decomposition into reliability
and resolution/uncertainty has been shown in [32]. There are a few reasons for preferring CRPS to NLPD. They are
both negatively oriented, but CRPS is equal to zero for a perfect forecast with no uncertainty (deterministic). Indeed,
the CRPS has the same unit as the variable of interest, and it collapses to the absolute error|yo − µ| for σ → 0, that
is, when the forecast becomes deterministic. On the other hand, the limitσ → 0 is problematic for NLPD. Figure 1
shows a graphical comparison between NLPD (left panel) and CRPS (right panel). Different curves show the isolines
for the two scores, as a function of the errorε (vertical axis) and the standard deviationσ (horizontal axis). The black
dashed line indicates the minimum value of the score, for a fixed value ofε. Because we are approaching the problem
of variance estimation by assigning an empirical variance to single-point black-box predictions, it makes sense to
minimize a score as a function ofσ only, for a fixed value of the errorε. By differentiating Eq. (3) with respect toσ,
one obtains

d CRPS
dσ

=

√
2
π

exp

(
− ε2

2σ2

)
− 1√

π
, (4)

and the minimizer is found to beσ2
min,CRPS= ε2/log2. Note that the minimizer for NLPD isσ2

min,NLPD = ε2.
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As it is evident from Fig. 1, CRPS penalizes under- and overconfident predictions in a much more symmetric
way than NLPD. Both scores are defined for a single instance of forecast and observation; hence they are usu-
ally averaged over an ensemble of predictions, to obtain the score relative to a given model, for instance:CRPS=∑

k CRPS(εk,σk).

3. RELIABILITY

Reliability is the property of a probabilistic model that measures its statistical consistency with observations. For
forecasts of discrete events, it measures if an event predicted with probabilityp occurs, on average, with frequency
p. This concept can be extended to forecasts of a continuous scalar quantity by examining the so-called reliability
diagram [33–35]. Note that in this paper we use the terms “calibration” and “reliability” interchangeably. A reliability
diagram for Gaussian forecasts is produced in the following way. Let us define the standardized errors associated
to theith observation/prediction in a set of sizeN asηi = εi/(

√
2σi). The value of the probability associated to

a given Gaussian forecast isΦi = (1/2)(erf(ηi) + 1). The reliability diagram is then provided by the empirical
cumulative distribution of the valuesΦi, defined asC(ϕ) = (1/N)

∑N
i=1 H(ϕ−Φi) (H is the Heaviside function).

Its interpretation is of observed frequency as a function of the predicted probability (note that this method of producing
a reliability diagram does not require binning). A perfect calibration shows in the reliability diagram as a straight
diagonal line.

The motivating argument of this work is that two models with identical score (and we use here NLPD to illustrate
the argument, but the same would be true for CRPS) can have remarkably different reliability diagrams. We show an
example in Fig. 2. One thousand data points have been generated asN (0,σ(x)2), with x ∈ [0, 1] andσ(x) = x+1/2,
as in the synthetic dataset proposed in [36]. A model completely consistent with the data generation mechanism
(i.e., with zero mean and varianceσ2) produces the blue line in the reliability diagram in the left panel, that is
almost perfect calibration. However, one can generate a second model with a modified (wrong) varianceσ̃2 such that
NLPD(ε, σ̃) = NLPD(ε,σ), that is,

logσ̃2

2
+

ε2

2σ̃2
=

logσ2

2
+

ε2

2σ2
. (5)

Equation (5) always produces a solutionσ̃ 6= σ, as long asσ2 6= ε2 (we recall thatσ2 = ε2 is the global
minimum of NLPD, for fixedε). Graphically this can be seen in Fig. 1: for a constantε value, there are two values
of σ on the same NLPD contour. The red line in the left panel of Fig. 2 has been derived from such a modified model

FIG. 1: Isoline of constant NLPD (left) and CRPS (right) as a function of standard deviationσ, and errorε. The black dashed line
indicates the minimum, as function ofε.
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FIG. 2: Left: example of two models with identical value of NLPD= 0.4, and different reliability diagram. Right: Example of
several models for which the NLPD decreases (from NLPD= 0.45 for the blue line to NLPD= 0.07 for the cyan line), at the
expense of reliability. See text for details of how the synthetic data has been generated. Figures published online in color.

N (0, σ̃2), which is obviously miscalibrated. For this example NLPD= 0.4 (equal for both cases). As a complementary
argument, we show in the right panel of Fig. 2 the reliability diagram of several models, with decreasing values of
NLPD. One can appreciate that progressively decreasing NLPD results in a worse and worse calibration (note that
NLPD is negatively oriented, so smaller values mean better accuracy). These models have been generated again
starting from the perfectly calibrated synthetic model, progressively shifting the values assigned toσ2

i , towards the
global minimumσ2

i = ε2
i (hence decreasing NLPD). Thus, minimizing a traditional cost function such as NLPD,

for fixed errors, does not necessarily imply to achieve a well-calibrated model. Of course, we are not suggesting that
any model generated by means of minimizing NLPD is inevitably miscalibrated. However, unless explicitly enforced,
calibration will be a by-product of other properties. Once again, the same is true for CRPS.

3.1 Reliability Score for Gaussian Forecast

Reliability is a statistical property of a model, defined for a large enough ensemble of forecasts-observations. Here,
we introduce the reliability score for normally distributed forecasts. In this case, we expect the standardized errors
η calculated over a sample ofN predictions-observations to have a standard normal distribution with cdfΦ(η) =
(1/2)(erf(η) + 1). Hence we define the reliability score (RS) as:

RS=
∫ ∞

−∞
[Φ(η)− C(η)]2dη (6)

whereC(η) is the empirical cumulative distribution of the standardized errorsη, that is,

C(η) =
1
N

N∑

i=1

H(η− ηi) (7)

with ηi = (yo
i − µi)/(

√
2σi). Note that each error(yo

i − µi) is standardized with respect to a different (input-
dependent)σi. RS measures the divergence of the empirical distribution of standardized errorsη from a standard
normal distribution. From now on we will use the convention that the set{η1,η2, . . . , ηN} is sorted (ηi ≤ ηi+1).
Obviously this does not imply thatµi or σi are sorted as well. Interestingly, the integral in Eq. (6) can be calculated
analytically, via expansion into a telescopic series, yielding
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RS=
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i=1
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Differentiating theith term of the above summation, RSi, with respect toσi (for fixedεi), one obtains

dRSi

dσi
=

ηi

Nσi

(
2i− 1

N
− erf(ηi)− 1

)
. (9)

Hence, RSi is minimized when the valuesσRS
min satisfy

erf(ηi) = erf

(
εi√

2σRS
min

)
=

2i− 1
N

− 1. (10)

This could have been trivially derived by realizing that the distribution ofηi that minimizes RS is the one such that
the valuesΦ(ηi) are uniform in the interval[0, 1].

4. THE ACCRUE COST FUNCTION

The ACCRUE cost function introduced here follows from the simple principle that the variancesσ2
i estimated from

an ensemble of errorsεi should result in a model that is both accurate (with respect to the CRPS score), and reliable
(with respect to the RS score). Clearly, this gives rise to a two-objective optimization problem. It is trivial to verify that
CRPS and RS cannot simultaneously attain their minimum value (as was evident from Fig. 2). Indeed, by minimizing
the former,ηi = [sign(εi)/2]

√
log4 for anyi, which cannot result in a minimum for RS, according to Eq. (10). This

demonstrates that methods that focus solely on recalibration (any method of choice can be reformulated in terms of
minimizing RS) can possibly result in the deterioration of accuracy. In passing, we note that any cost function that is
minimized (for constantε) by a value of the varianceσ2 that is linear inε2 suffers this problem (becauseηi will be
a constant). Finally, notice that trying to minimize RS as a function ofσi (for fixed errorsεi) results in an ill-posed
problem, because RS is solely expressed in terms of the standardized errorsη. Hence, there is no unique solution
for the variances that minimize RS. Hence, RS can be more appropriately thought of as a regularization term in the
ACCRUE cost function. The simplest strategy to deal with multiobjective optimization problems is to scalarize the
cost function, which we define here as

ACCRUE= β · CRPS+ (1− β)RS. (11)

We choose the scaling factorβ as
β = RSmin/(CRPSmin + RSmin). (12)

The minimum ofCRPS isCRPSmin = (
√

log4/2N)
∑N

i=1 εi, which is simply the mean of the errors, rescaled by a
constant. The minimum of RS follows from Eqs. (8) and (10):

RSmin =
1√
πN

N∑

i=1

exp

(
−

[
erf−1

(
2i− 1

N
− 1

)]2
)
− 1

2

√
2
π

. (13)

Notice that RSmin is only a function of the size of the sampleN , and it converges to zero forN → ∞. The heuristic
choice in Eq. (12) is justified by the fact that the two scores might have different orders of magnitude, and therefore
we rescale them in such a way that they are comparable in our cost function (11). We believe this to be a sensible
choice, although there might be applications where one would like to weigh the two scores differently. In future work,
we will explore the possibility of optimizingβ in a principled way, for instance, constraining the difference between
empirical and ideal reliability score to be within limits given by the dataset sizeN , or by makingβ a learnable
parameter. Finally, in our practical implementation, we neglect the last constant term in the definition (13) so that, for
sufficiently largeN , RSmin ' (1/2)

√
2/π ' 0.4.
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5. RESULTS

In summary, we want to estimate the input-dependent values of the empirical variancesσ2
i associated to a sample

of N observations for which we know the errorsεi. We do so by solving an optimization problem in which the
set of estimatedσi minimizes the ACCRUE cost function defined in Eq. (11). This newly introduced cost function
has a straightforward interpretation as the trade-off between accuracy and reliability, which are two essential but
conflicting properties of probabilistic models. In practice, because we want to generate a model that is able to return
σ2 as a function of the inputsx on any point of a domain, we introduce a structure that enforces a certain degree of
smoothness of the unknown variance, in the form of a regression model. In the following we show some experiments
on toy problems and on multidimensional real datasets to demonstrate the easiness, robustness, and accuracy of the
method.

5.1 Toy Problems

In order to facilitate comparison with previous works, we choose some of the datasets used in [37], although for sim-
plicity of implementation we rescale the standard deviation so to be always smaller or equal to 1. Since in our method
we assume that a mean function is provided, for the toy problems we use the result of a standard (homoskedastic)
Gaussian process regression asf(x).

For all datasets the targetsyi are sampled from a Gaussian distributionN (f(x),σ(x)2). The first three datasets
are one-dimensional inx, while in the fourth we will test the method on a five-dimensional space, thus showing the
robustness of the proposed strategy.

G dataset:x ∈ [0, 1], f(x) = 2sin(2πx), σ(x) = (1/2)x + 1/2 [36].

Y dataset:x ∈ [0, 1], f(x) = 2(exp(−30(x− 0.25)2) + sin(πx2))− 2, σ(x) = exp(sin(2πx))/3 [38].

W dataset:x ∈ [0, π], f(x) = sin(2.5x) sin(1.5x), σ(x) = 0.01+ 0.25(1− sin(2.5x))2 [25,39].

5D dataset:x ∈ [0, 1]5, f(x) = 0, σ(x) = 0.45(cos(π +
∑5

i=1 5xi) + 1.2) [40].

Examples of 100 points sampled from theG, Y, andW dataset are shown in Fig. 3 (circles), along with
the true mean functionf(x) (red), and the one predicted by a standard Gaussian process regression model
(blue), used as an oracle. The bottom-right plot in Fig. 3 shows the distribution ofσ, which ranges in the
interval[0.09, 0.99].

For theG, Y, andW we use 100 points uniformly sampled in the domain. The5D dataset is obviously
more challenging; hence we use 10,000 points (note that this results in fewer points per dimension,
compared to the one-dimensional tests). For all experiments we test 100 independent runs.

We have tested a neural network and a polynomial best fit as a regression model. For simplicity, we choose a
single neural network architecture that we use for all the tests. We use a network with two hidden layers, respectively,
with 50 and 10 neurons. The activation functions are rectified linear (ReLU) and a symmetric saturating linear func-
tion, respectively. The output is given in terms of logσ, to enforce positivity ofσ2. For all experiments, the datasets are
randomly divided into training (33%), validation (33%), and test (34%) sets. All the reported metrics are calculated
on the test set only. The network is trained using a standard BFGQ quasi-Newton algorithm, and the iterations are
forcefully stopped when the loss function does not decrease for ten successive iterations on the validation set. The
only inputs needed are the inputsxi and the corresponding errorsεi. Finally, in order to avoid local minima due to
the random initialization of the neural network weights, we train five independent networks and choose the one that
yields the smallest cost function.

In the case of low-dimensional data one might want to try simpler and faster approaches than a neural network,
especially if smoothness of the underlying functionσ(x) can be assumed. For the one-dimensional test cases (G, Y,
W) we have devised a simple polynomial best fit strategy. We assume thatσ(x) can be approximated by a polynomial
of unknown order, equal to or smaller than 10:σ(x) =

∑10
l=0 θlx

l, where in principle one or moreθl can be equal to
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FIG. 3: Top: 100 points sampled from theG (left) andY (right) dataset (circles). Bottom-left: 100 points sampled from theW
dataset (circles). The red line shows the true mean functionf(x), while the blue line is the one predicted by the GP model.
Bottom-right: Distribution of true values of standard deviationσ for the5D dataset. Figures published online in color.

zero. The vectorΘ = {θ0, θ1, . . . , θ10} is initialized withθ0 = const and all the others are equal to zero. The constant
can be chosen, for instance, as the standard deviation of the errorsε. The polynomial best fit is found by means of
an iterative procedure (Algorithm 1). In other words, the algorithm finds the values ofΘ for a given polynomial
order that minimize the ACCRUE cost function. Then it tests the next higher order, by using the previous solution
as the initial guess. Whenever the difference between the solutions obtained with two successive orders is below
a certain tolerance, the algorithm stops. The multidimensional optimization problem is solved by a BFGQ quasi-
Newton method with a cubic line search procedure. Note that whenever a given solution is found to yield a local
minimum for the next polynomial order, the iterations are terminated.

The results for the 1D datasetsG, Y, andW are shown in Figs. 4–6, in a way consistent with [37]. The red
lines denote the true standard deviationσ(x) used to generate the data. The black line indicates the values of the
estimatedσ averaged over 100 independent runs, and the gray areas represent one and two standard deviations from
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Algorithm 1: Polynomial best fit

Input: dataxi, εi

Initialize p = 0, θ0 = const,Pmax = 10, tol
while p ≤ Pmax & err > tol do

p = p + 1
Initial guess for optimizationΘ = {θ0, . . . , θp−1, 0}
Θ = argmin ACCRUE(σi) (with σi =

∑p
l=0 θlx

l
i)

err = ||ACCRUE(σ(Θold))− ACCRUE(σ(Θnew))||2
end

FIG. 4: G dataset: True value of the standard deviationσ (red line) and mean value obtained averaging over 100 independent runs
(black line). The gray shaded areas denote the confidence interval of one and two standard deviations calculated from the same
ensemble of runs. In the left panelσ is calculated through a neural network, while in the right panel as a polynomial function (see
text). Figures published online in color.

FIG. 5: Y dataset: True value of the standard deviationσ (red line) and mean value obtained averaging over 100 independent runs
(black line). The gray shaded areas denote the confidence interval of one and two standard deviations calculated from the same
ensemble of runs. In the left panelσ is calculated through a Neural Network, while in the right panel as a polynomial function (see
text). Figures published online in color.

the mean. A certain spread in the results is due to different training sets (in each run the data points are sampled
independently) and, for the neural network, to random initialization. The left panels show the results obtained with
the neural network, while the right panels show the result obtained with the polynomial fit. In all cases, except for the
W dataset (polynomial case, right panel), the results are very accurate.

For the5D dataset it is impractical to compare graphically the real and estimatedσ(x) in the five-dimensional
domain. Instead, in Fig. 7 we show the probability density of the real versus predicted values of the standard deviation.
Values are normalized such that the maximum value in the color map for any value of predictedσ is equal to 1 (i.e.,
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FIG. 6: W dataset: True value of the standard deviationσ (red line) and mean value obtained averaging over 100 independent runs
(black line). The gray shaded areas denote the confidence interval of one and two standard deviations calculated from the same
ensemble of runs. In the left panelσ is calculated through a Neural Network, while in the right panel as a polynomial function (see
text). Figures published online in color.

FIG. 7: Probability density of the prediction versus real values ofσ for the5D dataset. The red line denotes perfect prediction. The
densities are normalized to have maximum value along each column equal to one. 10,000,000 samples have been used to generate
the plot (with a training set of 10,000 points). Figures published online in color.

along vertical lines). The red line shows a perfect prediction. The color map has been generated by 10,000,000 points,
while the model has been trained with 3300 points only. For this case, we have used an exact mean function (equal to
zero), in order to focus exclusively on the estimation of the variance. We believe that this is an excellent result for a
very challenging task, given the sparsity of the training set, that shows the robustness of the method.

5.2 Real-World Dataset

We have tested our method on the same datasets used in [16]. The only difference with the toy problems is that we
use 70% of the data for training, and we only use a neural network as regressor. The results reported in Table 1
are computed over 50 independent runs. For each run, we first train a standard neural network to provide the mean
functionf(x), by minimizing the mean square errors with respect to the targets. We then compare our method against
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TABLE 1: Comparison between different methods on several multidimensional datasets. Median values are
reported, calculated over 50 runs. Confidence intervals represent one standard deviation. Best values are in bold

Method CRPS RECAL KM ACCRUE
Score CRPS

Dataset Size Dim.
Boston Housing 506 13 0.25± 0.05 0.25± 0.04 0.25± 0.03 0.23±±± 0.04

Concrete 1030 8 0.22± 0.03 0.23± 0.13 0.26± 0.02 0.21±±± 0.03
Energy 768 8 0.059± 0.03 0.056± 0.03 0.087± 0.01 0.052±±± 0.01
Kin8nm 8192 8 0.17± 0.005 0.16± 0.01 0.24± 0.005 0.16±±± 0.005

Power plant 9568 4 0.13± 0.003 0.13± 0.05 0.15± 0.002 0.12±±± 0.01
Protein 45,730 9 0.38± 0.02 0.47± 0.13 0.40± 0.007 0.37±±± 0.02
Wine 1599 11 0.48± 0.03 0.50± 0.29 0.46±±± 0.02 0.48± 0.06
Yacht 308 6 0.06± 0.08 0.06± 0.02 0.19± 0.02 0.06±±± 0.02

Score Cal. err. (%)
Dataset Size Dim.

Boston Housing 506 13 26.2± 7.9 20.6± 5.5 17.5± 3.7 16.7±±± 5.9
Concrete 1030 8 22.6± 5.8 14.4± 3.8 22.1± 3.0 11.5±±± 3.9
Energy 768 8 29.3± 8.9 29.2± 8.0 28.3± 2.8 13.0±±± 6.5
Kin8nm 8192 8 15.9± 1.28 8.3± 1.30 25.5± 0.5 5.8±±± 1.28

Power plant 9568 4 12.5± 1.4 3.4± 0.9 16.1± 0.8 2.6±±± 0.8
Protein 45,730 9 13.1± 0.8 5.0±±± 0.9 10.6± 0.9 5.4± 0.88
Wine 1599 11 16.0± 3.7 7.9±±± 2.0 8.0± 2.4 8.3± 2.4
Yacht 308 6 26.0± 9.4 24.3± 13.5 36.6± 3.0 19.5±±± 8.5

three different models (first row in Table 1): CRPS means that the variance is estimated by minimizing CRPS only,
KM denotes a K-means method [41], RECAL indicates the isotonic regression method of [21], and ACCRUE denotes
our method. The scores reported (second row) are the median values (calculated on the test set only) of CRPS and of
the calibration error. To estimate the latter we derive the reliability diagram (in the way described in section 2), and
we compute the maximum distance to the optimal reliability (straight diagonal line). This is denoted, in Table 1, as
Cal. err. (in percentage). All quantities are reported along with their confidence interval, calculated as one standard
deviation. For the K-means method (which is possibly the simplest baseline method) we have clustered the training
data ink groups, calculated the standard deviationσ for each cluster, and assigned the same value ofσ for all test
points belonging to a given cluster. We have run experiments withk ranging from 1 to 10, and we report the minimum
values obtained for CRPS, and Cal. err. for the model that yields the best calibration (hence, purposely “leaking” the
test dataset to choose the optimalk). The RECAL method takes theσ estimated by the ACCRUE method and applies
the recalibration algorithm of [21]. Hence, in a sense both RECAL and KM are run in a setting that gives them, in
principle, an unfair advantage. This is done to emphasize the goodness of our method. Finally, the training sets used
for all methods are the same.

The results obtained by using the ACCRUE cost function are always better calibrated than minimizing CRPS
only and the KM method. In two cases only (Protein and Wine datasets) RECAL yields a slightly better calibration
error. However, in both cases, the accuracy (CRPS) of the RECAL method is penalized and we believe that the best
trade-off is still achieved by ACCRUE. In fact, ACCRUE offers the best trade-off between accuracy and calibration
across all datasets, as expected.

6. DISCUSSION AND FUTURE WORK

We have presented a simple parametric model for estimating the input-dependent variance of probabilistic forecasts.
We assume that the data are distributed asN (f(x),σ(x)2), and that an approximation of the mean functionf(x)
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is available (the details of the model that approximates the mean function are not important). In order to generate
the varianceσ2(x), we propose to minimize the ACCRUE cost function, which depends only onσ, on the errors
ε, and on the size of the training setN . We have shown that the classical method of minimizing the negative log
probability density (NLPD) does not guarantee that the result will be well-calibrated. On the other hand, methods that
exclusively focus on the post-process calibration tend to spoil their accuracy. Indeed, we have discussed how accuracy
and reliability are two conflicting metrics for a probabilistic forecast and how the latter can serve as a regularization
term for the former. We have shown that by using the new ACCRUE cost function, one is able to accurately discover
the hidden noise function. Several tests for synthetic and real-world (large) datasets have been shown.

An important point to notice is that the method will inherently attempt to correct any inaccuracy inf(x) by
assigning larger variances. For instance, the agreement between predicted and true values of the standard deviationσ

presented in Figs. 4–6 must be understood within the limits of the approximation of the mean function (provided by
a Gaussian process regression in those toy examples).

By decoupling the prediction of the mean function from the estimation of the variance, this method is not very
expensive and is suitable for large datasets. Moreover, for the same reason this method is very appealing in all appli-
cations where the mean function is necessarily computed via an expensive black-box, such as computer simulations,
for which thede factostandard of uncertainty quantification is based on running a large (time-consuming and ex-
pensive) ensemble, and for which large datasets of archived runs are often available. Finally, the formulation is well
suited for high-dimensional problems, since the cost function is calculated pointwise for any instance of prediction
and observation.

Although very simple and highly efficient the method is still fully parametric, and hence it bears the usual
drawback of possibly dealing with a large number of choices for the model selection. Interesting future directions
will be to incorporate the ACCRUE cost function in a nonparametric Bayesian method for heteroskedastic regression
and to generalize the constraint of Gaussian residuals.
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