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[1] The kinetic electron firehose instability (EFI) is thought to be a crucial mechanism for
constraining the observed electron anisotropy in expanding astrophysical plasmas, such as
the solar wind. The EFI arises in a bi-Maxwellian plasma when the parallel temperature is
greater than the perpendicular one, and its effect is to reduce anisotropy. We study this
mechanism via kinetic linear theory, extending and refining previous results, and by new
two-dimensional particle-in-cell (PIC) simulations with physical mass ratio. The results of
PIC simulations show under which conditions the EFI can indeed be regarded as a
constraint for electron distribution function. The detailed electron physics near marginal
stability condition is discussed, with emphasis on the competition between growing and
damping modes and on wave patterns formed at the nonlinear stage. The results also
suggest an observational signature that the EFI has operated, namely the appearance of
low-frequency, quasiperpendicular whistler/electron–cyclotron waves.
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1. Introduction

[2] Recent spacecraft observations of protons and elec-
trons in the solar wind have shown that the temperature
anisotropy developed by both species does not agree with
an adiabatic expansion of the wind. The scenario invoked
by some authors to justify the low level of anisotropy
observed is that linear instabilities such as the whistler and
mirror (for T?/Tk > 1) and the firehose (for T?/Tk < 1) play
the role of constraints to the development of larger
temperature anisotropies. This would be in accord with
the long-standing idea that any linear instability acts in such
a way as to reduce the source of free energy, i.e., the initial
driver of the instability, which in this case is the temperature
anisotropy. The idea of a linear instability threshold as a
constraint for the development of temperature anisotropy
has been investigated through observations, linear theory
and computer simulations, for electrons [Gary et al., 2000;
Messmer, 2002; Gary and Nishimura, 2003; Gary et al.,
2005; Stverak et al., 2008] and protons [Quest and Shapiro,
1996; Kasper et al., 2002; Hellinger et al., 2006;Matteini et
al., 2006, 2007], and for both cases: T?/Tk < 1 and T?/Tk > 1.
[3] The unifying method of research for all these works is

to seek a threshold condition for the anisotropy of the form

T?

Tk
¼ 1þ S

ba
kj

ð1Þ

where the parallel and perpendicular directions are with
respect to the background magnetic field, bkj = 8pnjkBTkj/

B0
2, S and a are constants, and all other symbols are

conventional. It is assumed that for appropriate values of S
and a, equation (1) represents a good approximation for a
curve with constant linear growth rate in the (T?/Tk, bk)
parameter space. In other words, to adopt equation (1) as a
threshold is equivalent to stating that the anisotropy is
constrained by a certain ad hoc value of the linear growth
rate. Observational studies confirm that this argument is
successful, and indeed in some cases statistical evidence has
been reported for distributions with a level of anisotropy
constrained within a certain value of the linear growth rate
[see e.g. Gary et al., 2005; Hellinger et al., 2006; Matteini
et al., 2007].
[4] In this paper we focus on the electron firehose

instability (EFI), which is driven by a parallel electron
temperature greater than the perpendicular one. In a fluid
picture the anisotropy Tk > T? is caused by the expansion of
the solar wind. For instance in the CGL approximation
[Chew et al., 1956], assuming a radially expanding plasma,
the ratio Tk/T? is predicted to increase proportionally to the
square of the distance from the Sun. Observations show a
completely different behavior and the Firehose Instability
therefore is expected to play a crucial role in this scenario.
[5] The linear theory for the EFI has been presented

recently by Li and Habbal [2000], and one-dimensional
particle-in-cell (PIC) simulation results (for nonphysical
mass ratio mi/me) have been obtained by Messmer [2002]
(for parallel propagation) and by Gary et al. [2005] (for
oblique propagation). Furthermore, a study of the EFI by
means of test particle simulations has been conducted by
Paesold and Benz [2003].
[6] The purpose of the present paper is to refine these

results showing PIC simulations for a two-dimensional
geometry and for physical mass ratio. There are at least
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three reasons why such study is of great importance in the
previously outlined framework. First, although it is well
known that the EFI is dominated by highly oblique pertur-
bations for every value of bke, it cannot be excluded that in
a nonlinear stage after the saturation of the linear instability,
quasiparallel waves are excited. The shift toward smaller
angles of propagation and longer wavelengths is in some
sense already evident, as we will show, within the linear
theory but it has to be quantified with a nonlinear study,
such as with a PIC simulation. Second, previous simulations
conducted with a one-dimensional slab geometry oriented
along the most rapidly growing perturbation, showed that
the final states of the instability were aligned on a contour of
constant linear growth rate, described in equation (1), even
if started from different initial conditions (see Figure 5 in
Gary et al. [2005]). This has been confuted by observations
that reported the existence of electrons within a certain finite
range of bke and T?/Tk near the marginal stability, and not
aligned on a single curve [Stverak et al., 2008].
[7] Third, two-dimensional simulations offer a computa-

tional and theoretical background to the observational
community, highlighting signatures of particular waves
associated with the instability development, that could be
a valuable insight for future data analysis.
[8] Therefore there is a clear need for a two-dimensional

simulation in order to study not only the particle–wave
interactions that scatter the particles and reduce the anisot-
ropy, but also to study the interactions among waves
propagating at different angles, and to look at the final
distribution of wave patterns in space. The idea behind the
PIC simulations presented in this paper is to study the
evolution of the plasma starting from an unstable state with
relatively high linear growth rate, and to follow it toward
marginal stability. Therefore we do not focus on the
mechanism leading the system to such an unstable condi-
tion, but we assume it as our starting point.
[9] The paper is organized as follows. In section 2 we

review the linear Vlasov theory for the EFI, presenting new
plots and focusing on the competition between propagating
and nonpropagating modes. In section 3 we present and
discuss the results of our simulations. Finally, in section 4
we draw our conclusions.

2. Linear Vlasov Theory

[10] The linear properties of the kinetic EFI have been
elucidated by Li and Habbal [2000], Paesold and Benz
[1999], and Gary and Madland [1985], among others. In
this section we confirm and extend those results. We study a
collisionless bi-Maxwellian plasma of electrons and protons
within an uniform background magnetic field B0. The
normal modes of the linearized Vlasov equation are found
with the well-established technique for a homogeneous bi-
Maxwellian plasma, where it is assumed that the initial
equilibrium distribution function f0(x, v, t) is disturbed with
a small linear perturbation of the form f1 exp[i(k � x � wt)],
where in general f1 is a complex amplitude [e.g., Stix, 1992].
[11] The common procedure boils down to rewriting the

linear problem as

D k;wð Þ � E ¼ 0; ð2Þ

where D is a 3 	 3 complex matrix, whose elements are
functions of k, w, and the equilibrium thermal velocities in
the parallel and perpendicular directions, and E is the
perturbed electric field. The dispersion relation w = w(k) is
found by solving for the determinant of D to be null, that is
the condition for equation (2) to yield a nontrivial solution.
The complex eigenvalues of the problem w = wr + ig are
found through the numerical solution of jDj = 0, by means
of a root-finding algorithm.
[12] We choose the same plasma parameters adopted by

Li and Habbal [2000], to facilitate comparisons. The ratio
of Alfvén speed to speed of light, vA/c, is set equal to 10�3,
and the plasma b = 8pnkBT/jB0j2 (where n is the plasma
density, kB is the Boltzmann constant, T is temperature) is
equal to 1 for protons. The range of bke studied varies from
2.5 to 10, for all angles of propagation q (cos q = k � B0/
jkjjB0j), and T?e/Tke varies from 0.9 to 0.1 (we will omit the
subscript e, referring always to the electron temperature).
The proton distribution is Maxwellian.
[13] It is known that the EFI presents two branches: one

with wr = 0, and the other with wr 6¼ 0. Unfortunately no
unique nomenclature has been established yet. Li andHabbal
[2000] termed ‘‘quasiparallel’’ and ‘‘oblique’’ perturbations
with respectively wr = 0 and q < 30�, and wr > 0 and q > 30�
(see their Table [1]), while Gary and Nishimura [2003]
referred to the electron resonance factor as a distinguishing
feature, and dubbed the parallel wave ‘‘nonresonant’’, and
the oblique wave ‘‘resonant’’. As we will show the propa-
gating nonresonant perturbations extend to quasiperpendic-
ular angle (q > 50�), thus making both choices of
nomenclature ambiguous. We will henceforth refer to
the different branches according only to their propagating
(wr 6¼ 0) or nonpropagating (wr = 0) nature, irrespective of
the angle q. It is worth mentioning however, that in
agreement with Li and Habbal [2000] we have not found
any nonpropagating perturbation in the parallel direction
(and for small angles). It is also generally true that the
nonpropagating branch has a larger growth rate than the
propagating one.
[14] We now comment on the main properties of the

wr = 0 branch.
[15] In Figure 1 we show the contour plots of the

maximum growth rate gm/We as a function of the angle q
and of the anisotropy (1 � T?/Tk), for four different values
of bke = 10, 7.5, 5, 2.5. The contours tend to become
vertical at low q, and horizontal at high q, meaning that the
growth rate is highly dependent on the level of anisotropy
for large q and almost independent for small q. Also in each
plot the value of qm (the angle for which g reaches its
maximum at fixed anisotropy) decreases as the anisotropy
decreases. For bke = 2.5, the instability is confined above
the value of anisotropy (1 � T?/Tk) > 0.6, but the range of
angles involved is broader, with a nonvanishing g for q < 50�.
[16] In Figure 2 we show the values of gm/We (top) and qm

(bottom) as functions of T?/Tk. The four curves are again
for four values of bke = 10, 7.5, 5, 2.5, with the arrows
indicating the increasing direction. This plot might be
compared with Figure 5 of Li and Habbal [2000]. In the
bottom plot it is again clear that qm decreases as the
anisotropy decreases. Furthermore what emerges is that as
the factor T?/Tk increases, the shift toward a smaller angle is
more strongly dependant on a decrease in bke, than on a
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decrease in anisotropy. This is clear if one looks at the four
curves for a fixed value of T?/Tk: the gap in qm between the
curves becomes more and more enhanced as one moves
toward higher values of T?/Tk.
[17] It is hence implied from the linear analysis that the

evolution of the EFI will concurrently tend to reduce the
anisotropy, shift the most unstable modes toward a smaller
angle of propagation, and decrease the value of bke (by the
simultaneous effect of the reduction of parallel electron
temperature and of the increase of jB0j2).
[18] Another consequence implied by the linear theory is

an ‘‘inverse cascade’’ mechanism [Quest and Shapiro,
1996], namely the transfer of wave power toward smaller
wave vectors. Once a linear mode saturates, the decrease in
anisotropy excites another linear mode with longer wave-
length, thus effectively transferring the power toward
smaller wave vectors. This is clearly depicted in Figure 3,
where dispersion plots for different values of T?/Tk and for
four values of bke are shown. The value of the wave vector
km corresponding to the maximum growth rate gm/We

decreases with lower anisotropy, and it is much more
influenced by a decrease in anisotropy for fixed bke than by
a decrease in bke for fixed anisotropy. Also, the range of

Figure 1. Contour plot of the growth rate gm/We of the nonpropagating EFI as function of the angle q
and the anisotropy 1 � T?/Tk for four different values of bke = 10, 7.5, 5, and 2.5.

Figure 2. Maximum growth rate gm/We (top) and corre-
sponding angle of propagation qm (bottom) as functions of
T?/Tk. The four different curves are for bke = 10, 7.5, 5, and
2.5, with the arrow indicating increasing direction.
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unstable wave vectors becomes narrower as the anisotropy
decreases.
[19] Summarizing, the values of qm and km both decrease

as the instability develops, but while the first has a strong
dependence on the value of bke, the latter is more strongly
influenced by the decrease of the anisotropy.
[20] As we mentioned the EFI presents two branches. It

has been argued that for the maximum growth rate gm the
nonpropagating branch is largely dominant. However we
show in Figure 4 that, at least for certain angles q, the two
branches yield comparable growth rates, and for small
enough angles the propagating branch is always dominant.
Solid and dashed lines denote, respectively, the nonpropa-
gating and the propagating branches. The left panels in
Figure 4 shows gm/We versus q for three different aniso-
tropies for a fixed value of bke = 5. The right panel shows
the wave vector for the same branches. The wr 6¼ 0 mode
has a slightly longer wave vector for all q. Figure 4 is
interesting from the point of view of studying the final stage
of the instability, because it shows clearly that propagation
at large angles is possible. The appearance of such waves
will likely depend on the level of saturation of the fast
growing wr = 0 perturbation. If the waves with the highest
growth rate saturate soon after the appearance of the

instability, there are reasons to think that propagating waves
may be excited. Of course this is only a possible scenario,
that will need to be confirmed or refuted by simulations.
[21] Another aspect of the EFI we have investigated is the

so-called marginal stability condition, which is a crucial
issue in the later discussion. The traditional way to study the
marginal stability state is to choose a small value for the
growth rate, and to find the appropriate fitting parameters S
anda such that equation (1) is satisfied for that constant value
of g, within a certain range of bke. The smallest value for
g/We is usually of the order of 10�3. This is because the
numerical root-finding algorithm may suffer from inaccu-
racy or convergence problems for smaller values.
[22] We adopt a slightly different practice, which is more

effective and accurate than the commonly used Newton–
Raphson method for such small values of g. We have studied
the threshold at g = 0, within the range 1 � bke � 10,
finding the corresponding value of T?/Tk correct up to the
third decimal digit, by solving the determinant of D on a
grid (wr, g) for different values of k and q. The value w for
which jDj = 0 was then found by numerically calculating
the intersections of the curves Re(jDj) = 0 and Im(jDj) = 0.
We also have fitted the solutions into equation (1), and the
values for the parameters are: S = �1.2951, a = 0.9809,

Figure 3. Dispersion plots of the maximum growth rate gm/We for the nonpropagating EFI as functions
of kc/wpi. The number on each curve indicates the value of T?/Tk. The four panels are for bke = 10, 7.5, 5,
and 2.5.
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which are not surprisingly very close to the values found by
Gary and Nishimura [2003] for g/We = 10�3.

3. Simulations and Results

[23] Here we present the results for simulations run with
the two-dimensional version of the parallel implicit PIC
code PARSEK (for details about the implicit algorithm, see
Lapenta et al. [2006] and Brackbill and Cohen [1985]). As
it is known, the implicit method allows the choice of a
timestep Dt and a grid size Dx that do not satisfy the
Courant condition cDt/Dx < 1 (c is the speed of light). This
condition is instead replaced by a less restrictive constraint,
where the speed of light is substituted by the electron
thermal velocity, without loss of stability or accuracy
[Brackbill and Forslund, 1982].
[24] The computational box (x, y) in space is in Cartesian

coordinates, and the background magnetic field is along the
x-axis. Particle velocities, electric and magnetic field are all
3D quantities.
[25] We present results of simulations both in one-dimen-

sional and two-dimensional, where the one-dimensional
simulation box is aligned with the initially most unstable

wave. The size is chosen so that respectively two and four
wavelengths of the most unstable mode fit into the box for
two-dimensional and one-dimensional runs. The parameters
chosen for all the simulations are given in Table 1, along
with the Courant coefficient cDt/Dx, which shows clearly
the advantage of using an implicit method. The number of
computational particles per cell for each species is 100, and
the ion-to-electron mass ratio is physical (i.e., mi/me =
1836).
[26] Every run starts from an unstable region and the

instability initially grows from the simulation noise.
Figure 5 shows the ‘‘trajectory’’ in the (bke, 1�T?/Tk) space
of each run as it evolves in time. Superimposed on the same
figure is the contour plot of the linear growth rate (the dot-
dashed line indicates gm/We = 0, as derived in the previous
section). The growth rate profile for the EFI is qualitatively
similar to that for the proton firehose instability (compare
with Figure 1 in Matteini et al. [2006]). This is a sign that
for both instabilities, the isotropic species does not play any
particular role in the development of the instability. This is
certainly true in our simulations, where the protons do not
change their properties and their temperature, remaining
Maxwellian. Three aspects of Figure 5 are worthy of

Figure 4. Growth rate gm/We (left) and corresponding wave vector kc/wpi (right) for both propagating
(dashed line) and nonpropagating (solid line) EFI modes, as a function of the angle q, for the case bke = 5.

Table 1. Parameters of the PIC Simulationsa

Run # bke 1 � T?/Tk Lxwpi/c Lywpi/c Nx 	 Ny DtWe qB, deg cDt/Db

1 5 0.5 1.4122 0.514 800 	 400 0.0128 0 5.44
2 5 0.5 0.966 0.0083 760 	 3 0.0110 70 4.72
3 5 0.7 1.3728 0.3678 600 	 300 0.0184 0 8.16
4 5 0.7 0.7106 0.0031 400 	 3 0.0147 80 7.74
5 7.5 0.65 1.9611 0.3458 1200 	 224 0.0128 0 4.53
6 7.5 0.65 0.6811 0.0042 320 	 3 0.0103 80 4
7 10 0.5 0.993 0.0027 520 	 3 0.0064 75 3.88
aLx and Ly are the length of the box in the x and y direction, Nx and Ny are the number of cells, Dt is the timestep, and qB is the angle between the

background magnetic field and x-axis.
bMaximum value between cDt/Dx and cDt/Dy.
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comment. The first is the quantitative difference between the
one-dimensional runs (plotted in solid red) and the corre-
sponding two-dimensional runs (plotted in dashed black), that
justifies studying the problem in the more complete two-
dimensional geometry.
[27] The second aspect is that all the curves at a certain

stage approach the marginal stability threshold (plotted as a
dot-dashed contour). At that stage for the majority of wave
vectors at any angle of propagation, the only linear modes
that are solutions of the linear Vlasov equation are damping
waves. The effect of quasiperpendicular damped modes on
particles and fields is to weaken the magnetic fluctuations,
and channel the energy toward particles, predominantly in
the parallel direction, thus increasing the anisotropy. There-
fore the damping waves and the EFI are two opposite
competing mechanisms. The appearance of damping modes
in the system while the EFI growth rate is becoming
smaller, leads to trajectories that are bouncing around the
marginal stability threshold. This happens both for one-
dimensional and two-dimensional runs. However, what
happens in the case of the slab geometry is that after the
initial linear perturbations saturates (and the growth rate
becomes small), the damping modes pull back the system to
a position where a similar linear perturbation (with the same
angle of propagation but smaller wave vector), can grow
again, and so on. Hence the pattern of the trajectories is self-
similar with stages of growing perturbations (trajectories
moving toward bottom left in the (bke, 1�T?/Tk) space),
followed by damping (trajectories moving top right).
Something different happens in the two-dimensional runs.
We still have intermittent growing and damping phases, but
now the trajectories are not anymore self-similar, in the
sense that after the saturation of the most unstable mode,
other modes (at different angles) can still grow (and the

trajectories will still move bottom left, but after adjusting
onto a different curve).
[28] The third comment is about the low level of anisot-

ropy that all runs can reach. End states are characterized by
an anisotropy (1 � T?/Tk) ] 0.3. It is probably meaningless
to try to attach a certain value of final anisotropy to each
run, because that clearly depends on what one considers as
the ‘‘final value’’, due to the oscillations around the
threshold experienced by the system. This considerations
has strong implications in the definition of the EFI as a
constraint for the observed anisotropy in the solar wind.
Considering that spacecraft data offer a snapshot of particle
properties along a certain period of time, one should not
expect to find that electrons have always a level of
anisotropy lower then the threshold at g = 0.
[29] For all the runs the electron distribution function

remains approximately bi-Maxwellian and hence is not
shown.
[30] We now present and comment in detail on the results

from run 5, the others being qualitatively similar. Already
from Figure 5 one can notice that the system undergoes
several different stages. The linear instability grows rapidly
at the beginning, and saturates at TWe  15, when the
trajectory in Figure 5 adjusts (near the contour g/We = 0.15)
and soon moves toward smaller anisotropy. The develop-
ment of the magnetic perturbation dB is depicted in the top
panel of Figure 6, where the quantity jdBj2/jB0j2 is shown in
time. The initial linear response is clear. From the time
TWe  22 to time TWe  37 the perturbation amplitude is
very slightly growing, reaching its peak. This corresponds,
in Figure 5 to the trajectory rapidly moving from bke  5.7
to bke  4 with correspondingly decreasing anisotropy.
From time TWe  37 onward the amplitude is constantly
decreasing (with a local maximum at TWe  72, that as we

Figure 5. The trajectories of the simulations stated in Table 1, plotted in the (bke, 1�T?/Tk) space. The
contour plot superimposed indicates the linear growth rate gm/We, and the threshold condition gm/We = 0
is plotted in dot-dashed curves. One-dimensional simulations are plotted in red solid line; two-
dimensional simulations are plotted in black dashed line. Squares indicate the end point of a run.
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will see corresponds to the saturation of a long wavelength
mode), and it becomes very low. The bottom panel of
Figure 6 shows the developments of the anisotropy. As
expected, the anisotropy lowers when the instability grows,
and grows during damping phases. It is interesting (and yet
another rationale for two-dimensional simulations) that the
greater contribution to the decrease of anisotropy (between
times TWe  22 and TWe  37) is not due to the initially
most unstable wave (that is indeed already saturated at that
time, as we will discuss later). The development of bke is
depicted in Figure 7. The bottom panel shows the factors
rTke/jTkej (solid line), and jB0

2j/rB0
2 (dashed line), that are

the normalized gradients of the numerator and denominator
of bke. Looking at bke, it follows the same kind of evolution
of the anisotropy. What is interesting here is that the
increase or decrease of bke is more controlled by the
fluctuations than by the decreasing parallel temperature in
the linear stage, and vice versa in the nonlinear stage.
[31] In order to understand the role played by individual

modes, and how different waves interact among them, one
has to look at the Fourier transform of the magnetic
fluctuations. Since the predominant component of the
magnetic fluctuations is dBz (which is the component
perpendicular to both k and B0), we show in Figure 8 the
amplitude of the discrete Fourier transform of dBz for the
more dominant wave vectors, as functions of time. For this
run the initially most unstable wave is predicted to have
kc/wpi = 36.9, q = 80�. The linear growth of this wave
(plotted in blue) is clearly visible, and it is indeed the mode
that grows more rapidly. As already mentioned, it saturates
at time TWe  15. Other quasiperpendicular perturbations
grow linearly in this initial stage. In red and green we show
waves with kc/wpi = 18.45, q = 80�, and kc/wpi = 19.3, q = 70�,
respectively. The other three curves represent perturbations
with q = 62� (cyan), q = 54� (magenta), q = 0� (black). As
predicted, after the breakdown of the linear growth for the
most unstable wave, all the other modes continue to grow.
Moreover it is interesting that the saturation of the blue
curve coincides with a change of slope for the green and red
ones. We interpret this feature as the signature that after the

time TWe  15, the quasiperpendicular long wavelength
modes grow not by a linear mechanism, but by an inverse-
cascade mechanism due to the saturation and damping of
the most unstable small wavelength mode.
[32] For what concerns the parallel and oblique (q = 62�

and q = 54�) modes, they clearly grow nonlinearly and their
amplitude become comparable to the quasiperpendicular
modes around the time TWe  55. Although it is difficult
to identify exactly how the magnetic fluctuation energy is
channeled between waves, a certain degree of wave–wave
interactions is evident. What is here important, also from an
observational point of view, is that the EFI is certainly
driven by quasiperpendicular modes in its initial stage, but
in the nonlinear stage it supports waves at any angle of
propagation. Each of the modes shown is indeed the most
dominant over a certain period of time (also the exactly
parallel one).
[33] In the previous section we highlighted how the

inverse-cascade and the shift toward smaller angle of
propagation were implied by the linear theory. The simu-
lations have indeed confirmed that those mechanisms take
place, and we now quantify them. We consider the ampli-
tude of the Fourier transform (in space) of all the modes
detectable in the computational box. In Figure 9 we present
the contour plot of such amplitudes as a function of only q
(i.e., integrated over k) in the top panel, and as a function of
only k (i.e., integrated over q) in the bottom panel. Time is
on the vertical axis. In the top panel one can see the two
peaks at q = 80� and q = 70� that just confirm the discussed
growth of the blue and red lines in Figure 8. However it is
probably more interesting to note what happens from time
TWe = 50 onward. The energy becomes rapidly distributed
over a broad range of angles (from q  30� to q  80�), and
the quasiperpendicular propagation is not anymore domi-
nant. As for the inverse-cascade mechanism, the bottom
panel shows that the energy moves from being centered
around kc/wpi = 36.9 to kc/wpi  20. In this case however
the inverse-cascade does not proceed further at longer times.

Figure 6. Magnetic fluctuation jdBj2/jB0j2 (top) and
anisotropy 1 � T?/Tk (bottom) versus time TWe for run 5.

Figure 7. (top) bke versus time TWe. (bottom) Factors
rTke/jTkej (solid line) and jB0

2j/rB0
2 (dashed line), which

are the normalized gradients of the numerator and the
denominator of bke, versus time. Both panels are for run 5.
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[34] To conclude our analysis we show in Figure 10 the
Fourier transform in time of some of the modes we already
discussed in Figure 8. The period over which the transform
is performed is from TWe = 37 to the end of the simulation.

We are interested in detecting any linear mode that can be
identified as the remnant of the EFI process. In order to do
so we have solved the linear Vlasov problem, for bke = 4.7,
and T?/Tk = 0.77 (the average parameter values for this

Figure 8. Amplitude of the Fourier transform of dBz versus time TWe for the predominant mode in the
simulation. The wave vector k in the legend is intended normalized with respect to c/wpi.

Figure 9. Contour plot of the amplitude of the Fourier transform of dBz versus time (on vertical axes) as
a function of the angle q (top) and of the wave vector kc/wpi (bottom).
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period), for those four wave vectors. The system yields only
damping modes, being below the marginal stability thresh-
old, and the real frequency of one of the solutions is plotted
in Figure 10 as a vertical dashed line. As one can see the
peaks of the Fourier transform and this linear mode are very
close, thus indicating that one can indeed describe the final
stage of the simulation in terms of damping linear modes.
The linear solution that we have found to be closest to the
peaks of the Fourier transform is the extension of the
oblique whistler/electron–cyclotron mode to short wave-
lengths (using the terminology adopted in Gary [1993,
p. 113]). However we need to point out that slower modes
would not be detectable in our Fourier analysis, since the
simulations are not run for long enough.
[35] It is an interesting question whether the EFI, after it

has operated and brought the electron distribution toward
marginal stability, leaves any observational signature. So for
the same four modes, we have computed the Doppler-
shifted frequency w = wr � k � VSW, that would be the
frequency observed by a spacecraft embedded in a wind
with speed VSW. We have chosen an hypothetical solar wind
with velocity 500 km/s, and electron cyclotron frequency
equal to 1214 Hz. The Doppler-shifted frequency is of
course a function of the angles qSW between the solar
wind velocity and B0, and qB between k and B0. For a
fixed qSW, its maximum and minimum are found for the
case in which k, VSW, and B0 are coplanar, and are expressed
as w = wr � k 	 VSW cos(qB ± qSW). This quantity is plotted
(in Hz) in Figure 11 as a function of qSW for the four
different modes (q and k are reported in caption). Although

this figure is not intended to represent the large range of
parameters in which the solar wind can be found, it gives a
qualitative idea of the low frequency range in which one
should expect to find these modes. The orientation of the
wave perturbation is predominantly along dBz, i.e., perpen-
dicular to both k and B0.

4. Conclusions

[36] The electron kinetic firehose instability is driven by
an electron parallel temperature greater then the perpendic-
ular one, and it is thought to be an important process in
some astrophysical contexts (e.g. the solar wind) to deter-
mine the upper bound of the electron anisotropy. We have
studied the EFI via linear theory and PIC simulations.
Although it is well known that the solar wind presents
nonthermal features in its particle distribution function, we
have assumed a bi-Maxwellian electron population, so the
present study is relevant only to the core part of the
distribution.
[37] The linear analysis predicts that as the instability

develops two phenomena will occur: the inverse-cascade of
fluctuation energy toward longer wavelengths, and the shift
of the most unstable modes toward smaller angles of
propagation. Moreover, we have shown that the propagating
branch of the instability can extend to quasiperpendicular
directions, and although the instability is initially driven by
nonpropagating modes, we have conjectured that oblique
propagating perturbations could develop in the nonlinear
stage of the process.
[38] This suggests that fully nonlinear PIC simulations, in

a two-dimensional geometry, are needed in order to com-
prehend most of the physical processes that take place.
[39] We have shown the results for several runs in one-

dimensional and two-dimensional geometry. The develop-
ment of the EFI proceeds as follows. The linear growth of

Figure 10. Fourier transform in time for four different
modes (q and kc/wpi stated in the panels). The dashed lines
are the real frequency of a linear Vlasov solution for
average parameters bke = 4.7 and T?/Tk = 0.77.

Figure 11. Doppler-shifted frequency range (see text for
definition) of the same four modes plotted in Figure 10: q =
80�, kc/wpi = 18.45 (solid); q = 70�, kc/wpi = 19.3 (dashed);
q = 62�, kc/wpi = 20.5 (dotted); q = 54�, kc/wpi = 22.2 (dash-
dotted). The frequencies are in Hz, and the electron
cyclotron frequency is 1214 Hz.
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the instability is driven by quasiperpendicular modes, and
the anisotropy is rapidly reduced. Those modes soon
saturate and damp. Wave–wave interactions take place
and the fluctuation energy moves toward smaller and less
oblique wave vectors. As the system approaches its mar-
ginal stability threshold, linear damping modes start to play
a major role in the process. In the final stage the linear
instability and the damping modes compete to move the
system respectively toward smaller and larger values of
anisotropy and electron parallel beta. This means that the
end state of the plasma is effectively bouncing around the
marginal stability threshold, and therefore one should not
expect to never observe particle distribution functions above
the threshold, in order to state that the EFI is effectively
acting as a constraint on the electron anisotropy.
[40] From an observational point of view there are two

important remarks that need to be emphasized. Although the
instability is initially driven by quasiperpendicular, non-
propagating modes, in the nonlinear stage an high level of
fluctuations can be detected at any angle of propagation.
Also, in the final stage, the damping modes can give rise to
propagating waves, that we have interpreted as the exten-
sion to short wavelengths of the oblique whistler/electron–
cyclotron mode. Those are low frequency modes and we
have predicted their Doppler-shifted frequency in a hypo-
thetical 500 km/s solar wind, with We = 1214 Hz, to be
]100 Hz. This is an important signature that the firehose
instability has operated, and we propose it as observational
evidence (although probably not easy to detect) in favor of
the ongoing debate about the role of the EFI and the thermal
properties of the observed electron distribution function in
the solar wind.
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Hellinger, P., P. Trávnı́ček, J. C. Kasper, and A. J. Lazarus (2006), Solar wind
proton temperature anisotropy: Linear theory and WIND/SWE observa-
tions, Geophys. Res. Lett., 33, L09101, doi:10.1029/2006GL025925.

Kasper, J. C., A. J. Lazarus, and S. P. Gary (2002), Wind/SWE observa-
tions of firehose constraint on solar wind proton temperature anisotropy,
Geophys. Res. Lett., 29(17), 1839, doi:10.1029/2002GL015128.

Lapenta, G., J. U. Brackbill, and P. Ricci (2006), Kinetic approach to
microscopic-macroscopic coupling in space and laboratory plasmas,
Phys. Plasmas, 13, 5904+, doi:10.1063/1.2173623.

Li, X., and S. R. Habbal (2000), Electron kinetic firehose instability,
J. Geophys. Res., 105, 27,377–27,386.

Matteini, L., S. Landi, P. Hellinger, and M. Velli (2006), Parallel proton fire
hose instability in the expanding solar wind: Hybrid simulations, J. Geo-
phys. Res., 111, A10101, doi:10.1029/2006JA011667.

Matteini, L., S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli,
B. E. Goldstein, and E. Marsch (2007), Evolution of the solar wind
proton temperature anisotropy from 0.3 to 2.5 AU, Geophys. Res. Lett.,
34, L20105, doi:10.1029/2007GL030920.

Messmer, P. (2002), Temperature isotropization in solar flare plasmas due to
the electron firehose instability, Astron. Astrophys., 382, 301–311,
doi:10.1051/0004-6361:20011583.

Paesold, G., and A. O. Benz (1999), Electron firehose instability and accel-
eration of electrons in solar flares, Astron. Astrophys., 351, 741–746.

Paesold, G., and A. O. Benz (2003), Test particle simulation of the electron
firehose instability, Astron. Astrophys., 401, 711–720, doi:10.1051/0004-
6361:20030113.

Quest, K. B., and V. D. Shapiro (1996), Evolution of the fire-hose instabil-
ity: Linear theory and wave-wave coupling, J. Geophys. Res., 101,
24,457–24,470.

Stix, T. H. (1992), Waves in Plasmas, American Institute of Physics, New
York.

Stverak, S., P. Travnicek, E. Maksimovic, E. Marsch, A. N. Fazakerley, and
E. E. Scime (2008), Electron temperature anisotropy constraints in the
solar wind, J. Geophys. Res., 113, A03103, doi:10.1029/2007JA012733.

�����������������������
E. Camporeale and D. Burgess, Astronomy Unit, Queen Mary University

of London, Mile End Road, London E1 4NS, UK. (e.camporeale@qmul.
ac.uk; d.burgess@qmul.ac.uk)

A07107 CAMPOREALE AND BURGESS: ELECTRON FIREHOSE INSTABILITY

10 of 10

A07107


