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The initial state recurrence in numerical simulations of the Vlasov-Poisson system is a well-known

phenomenon. Here, we study the effect on recurrence of artificial collisions modeled through the

Lenard-Bernstein operator [A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456–1459 (1958)].

By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence

problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of

the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime

through an Eulerian collisional Vlasov-Poisson code. It is found that, despite being routinely used,

an artificial collisionality is not a viable way of preventing recurrence in numerical simulations

without compromising the kinetic nature of the solution. Moreover, it is shown how numerical

effects associated to the generation of fine velocity scales can modify the physical features of the

system evolution even in nonlinear regime. This means that filamentation-like phenomena, usually

associated with low amplitude fluctuations contexts, can play a role even in nonlinear regime.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940963]

I. INTRODUCTION

When the Vlasov-Poisson (VP) equations are studied by

means of Eulerian numerical simulations, one encounters,

for low amplitude fluctuations, the problem of the initial

state recurrence. As explained by Cheng et al.,1 the recur-

rence phenomenon is intimately related to the presence of a

free-streaming term in the distribution function and to the

filamentation problem.1–5 Since the mesh-size of the velocity

grid is necessarily finite, the initial state is periodically

re-constructed, and thus the electric field exhibits a fake

recurrence of the initial state, whose period is Trec¼ 2p/kDv,
k being the perturbation wavenumber and Dv the numerical

grid mesh in velocity space.

In this paper, the effects of collisions on the phenom-

enon of the numerical recurrence are discussed. Collisions

are modeled through the Lenard-Bernstein (LB) operator,

first proposed in 1958 by Lenard and Bernstein6 as a full

three-dimensional velocity space collisional operator. The

LB operator is a linear Fokker-Planck collisional operator

which belongs, as the Dougherty one,7,8 to the class of

“simplified” collisional operators, and both collisional terms

can be interpreted as advection-diffusion operators in the

velocity space. Basically, since both theoretical and numeri-

cal approaches of the Landau collisional integral9–11—the

natural collisional operator for plasmas—are very compli-

cated, effects of collisions are usually modeled through

simplified collisional operators as the two mentioned above.

Recently, by comparing the effects of the Landau and

Dougherty operators in a homogeneous plasma, Pezzi

et al.12 have shown that the two operators can be success-

fully compared once time is opportunely scaled by a constant

factor. This represents a quite good and computationally

affordable way to perform self-consistent collisional simula-

tions in the realistic three-dimensional velocity space.13

However, when collisions act on longitudinal electro-

static waves and the system dynamics occurs preferentially

in only one direction, one can describe collisional effects in

a reduced one-dimensional velocity space by adopting one-

dimensional collisional operators. This approach has already

been adopted in several works.14–22 In the same spirit, here

we focus on the one-dimensional LB operator. Our analysis

complements previous results discussed in earlier works (see

Refs. 23–26): as these authors pointed out, for the linear

Landau damping problem, an opportune collisionality can

prevent the onset of the numerical recurrence and restore the

correct collisionless damping as expected within the Landau

theory.27

Moreover, an important result in the study of the LB

operator has been established by Ng et al.23 While the colli-

sionless Vlasov-Poisson system supports a continuous spec-

trum of neutral singular eigenmodes (the so-called Case-Van

Kampen modes28,29), the introduction of the LB operator

modifies the spectrum into a set of proper, discrete eigenmo-

des. The Landau damping phenomenon, which in the

collisionless case appears due to the phase-mixing of the con-

tinuous spectrum,27,30 is recovered as a discrete eigenmode, in

the limit of vanishing collisionality. However, as we will

show, when the Vlasov-Poisson-LB system is discretized in

the velocity space (and hence bound to a finite resolution), the

Landau root is recovered as a discrete eigenvalue only for a

given value of collisionality.

Interestingly, the same effect on the spectrum induced

by LB collisions has been discussed in Ref. 25 in the context

of spectral deformation. This is a technique introduced for

the Vlasov-Poisson system in Ref. 31, where a non-unitary
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transformation is applied to the linear operator, in such a

way that its eigenvalues with nonzero real part remain

unchanged, while the continuum of neutral modes is

damped. In analogy to the case of LB operator, the Landau

damping is recovered as a true eigenmode. Therefore, we

suggest that the LB operator might be interpreted as a spec-

tral deformation to the collisionless Vlasov-Poisson system.

However, the precise identification of the transformation

which is equivalent to the LB operator is left for future

work.

The aim of our analysis is to understand if recursive

effects or any other numerical effect associated to limited ve-

locity resolution of Eulerian calculations can be successfully

removed by making use of a collisional operator, without

increasing the number of gridpoints in the velocity domain

(and without altering the physical features of the system evo-

lution). In case of positive response, this would be extremely

useful especially for multi-dimensional simulations, where

the velocity resolution is limited for computational reasons.

We show that, in general, the collision frequency � which is

suitable for preventing recurrence in the linear regime is a

function of the perturbation wavenumber: as the wavenum-

ber increases, a stronger collisionality is necessary to avoid

the onset of the numerical recurrence. Moreover, by focusing

on the nonlinear Landau damping and, in particular, on the

formation of a Bernstein-Greene-Kruskal (BGK) nonlinear

wave,32,33 we show that (i) the collisionless case is also

slightly affected by recurrence and (ii) collisional effects

become important when the dynamics evolves to the nonlin-

ear stage. Therefore, it seems impossible to use the LB

operator to avoid the numerical recurrence and, simultane-

ously, preserve the phase space structures developed as in

the collisionless case. Of course, in the case of higher veloc-

ity resolution, for which the recurrence time is significantly

larger than the characteristic time of the physical process of

interest (Landau damping, onset of instabilities, generation

of nonlinear BGK structures, and so on), the use of a colli-

sional operator opportunely tailored to eliminate numerical

recurrence does not affect the reliability of the physical

results for times smaller than the recurrence time. However,

let us remark that this case is not the one of interest in our

analysis in which we intentionally choose to have recurrence

in the initial stage of the simulations, which typically cannot

afford a very fine resolution in velocity space (especially in

multi-dimensions). Finally, by exploring the recurrence

effect on the bump-on-tail instability,30 we show that the re-

currence affects both the linear exponential growth and the

nonlinear saturation of the instability by producing a fake

growth in the electric field and that, as in the nonlinear

Landau damping case, collisional effects are not able to pre-

vent the initial state recurrence without significantly altering

the nonlinear structures.

In summary, the purpose of this paper is twofold. First,

we show how recursive effect and filamentation, which are

usually described in the context of low amplitude fluctua-

tions, can also be problematic in nonlinear phenomena, such

as the saturation regime of the bump-on-tail instability.

Second, we discuss a useful diagnostic, in terms of expan-

sion of the velocity space into Hermite functions, that allows

to better appreciate the effect of an artificial collisional oper-

ator in phase space.

Let us summarize the content of the paper. In Sec. II,

the theoretical background of the problem is given and the

numerical strategies adopted to approach the solution are

explained. Then, in Sec. III, the recurrence effects on the

Landau damping phenomenon are described in both linear

and nonlinear regimes by expanding the Vlasov-Poisson sys-

tem in the Hermite-Fourier basis and by means of Eulerian

simulations. Moreover, we investigate how collisional

effects prevent the recurrence problem but, at the same time,

smooth out the nonlinear plasma dynamics features as the

system evolves to the nonlinear regime. Then, in Sec. IV, we

analyze the initial state recurrence problem and the colli-

sional effects for the case of the bump-on-tail instability.

Finally, in Sec. V, we conclude by summarizing the shown

results.

II. THEORETICAL BACKGROUND AND NUMERICAL
MODELS

Here, we consider a quasi-neutral and unmagnetized

plasma composed by kinetic electrons and immobile back-

ground ions. We assume that only electrostatic interactions

occur between particles; therefore, the Maxwell system

reduces to the Poisson equation. Furthermore, since electron-

ion and ion-ion collision frequencies are much smaller than

the electron-electron one, we take into account only

electron-electron collisions.11 As introduced above, electron-

electron collisions are modeled through the LB collisional

operator.6

The normalized collisional VP in the 1D–1V (one

dimension in physical space and one dimension in velocity

space) phase space configuration read

@f

@t
þ v

@f

@x
þ @/

@x

@f

@v
¼ @f

@t

����
coll

; (1)

� @2/
@x2

¼ 1�
ð
f dv; (2)

where f¼ f(x, v) is the electron distribution function, /ðxÞ is
the electrostatic potential defined as E ¼ �d/=dx (E is the

electric field), and @f=@tjcoll is the LB collisional operator.

Due to their inertia, the protons are considered as a motion-

less neutralizing background of constant density n0¼ 1. In

previous equations, time is scaled to the inverse electron

plasma frequency xpe and velocities to the initial electron

thermal speed vth,e; consequently, lengths are normalized by

the electron Debye length kDe¼ vth,e/xpe and the electric

field by xpemvth,e/e (m and e being the electron mass and

charge, respectively). For the sake of simplicity, from now

on, all quantities will be scaled using the characteristic

parameters listed above.

The scaled Lenard-Bernstein6 collision operator is

@f

@t

����
coll

¼ �
@

@v

@f

@v
þ vf

� �
(3)
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being � the constant collisional frequency. The LB operator

preserves global mass. Moreover, if the distribution function

has null average speed V¼ 0 and unitary temperature T¼ 1,

being V ¼ 1=n
Ð
dvfv; n ¼

Ð
dvf , and T ¼ 1=n

Ð
dvðv� VÞ2f ,

respectively, plasma mean velocity, density, and tempera-

ture, it conserves also momentum and energy.

In the following we analyze the equation systems Eqs.

(1) and (2) by performing two different analyses, which are

briefly explained in the next subsections.

A. Fourier-Hermite decomposition (linear analysis)

A very convenient way of studying the properties of the

LB operator in the linear regime is by employing an expan-

sion of the linearized distribution function into a Fourier-

Hermite basis. Here, we use the so-called asymmetrically

weighted Hermite functions19,34,35

WnðnÞ ¼ ðp2nn!Þ�1=2HnðnÞe�n2 ; (4)

WnðnÞ ¼ ð2nn!Þ�1=2HnðnÞ; (5)

where Hn is the n-th Hermite polynomial, defined as

Hn nð Þ ¼ �1ð Þnen2 dn

dnn
e�n2
� �

; (6)

and n ¼ v=
ffiffiffi
2

p
. The basis in Eqs. (4) and (5) has the follow-

ing properties:

ð1

�1
WnðnÞWmðnÞdn ¼ dn;m; (7)

vWnðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Wnþ1ðnÞ þ

ffiffiffi
n

p
Wn�1; (8)

dWn nð Þ
dv

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ

p
Wnþ1 nð Þ; (9)

dn,m being the Kronecker delta. Eqs. (1) and (2) are linear-

ized around an homogeneous equilibrium that, when

expanded in Hermite functions, reads f0ðvÞ ¼
P

n¼0 C
eq
n

WnðnÞ. Note that, for a Maxwellian equilibrium with zero

mean velocity, all coefficients Ceq
n are null for n> 0. The

perturbed distribution function f1(x, v)¼ f(x, v)� f0(v) is

expanded as

f1 x; vð Þ ¼
X

n;j

Cn;jWn
vffiffiffi
2

p
� 	

eikjx; (10)

with kj¼ 2pj/L, and L the domain length. By using the ortho-

gonality of the Fourier-Hermite basis, one obtains, for each

kj mode

dCn;j

dt
þ ikj

ffiffiffiffiffiffiffiffiffiffi
nþ1

p
Cnþ1;jþ

ffiffiffi
n

p
Cn�1;jþ

ffiffiffiffiffi
2n

p

k2j
C0;jC

eq
n�1

 !

þn�Cn;j¼0: (11)

Note that Wn(n) is an eigenfunction of the LB operator

of Eq. (3), with eigenvalue �n�, and thus the use of the

rescaling factor in the argument of the basis in Eqs. (4) and

(5) allows to obtain a rather compact formulation

(compare, for instance, with the formulation in Ref. 26). In

particular, the linear equation (11) can be written in matrix

form as

d~Cj

dt
¼ Aj

~Cj ; (12)

where ~Cj is the vector defined as (C0,j, C1,j, C2,j,…)T, and the

matrix Aj is defined as

Aj ¼�ikj

0 1 0

1þ
ffiffiffi
2

p
Ceq
0 =k2j �=ikj

ffiffiffi
2

p
0

2Ceq
1 =k2j

ffiffiffi
2

p
2�=ikj

ffiffiffi
3

p
0

ffiffiffi
6

p
Ceq
2 =k2j 0

ffiffiffi
3

p
3�=ikj

ffiffiffi
4

p . .
.

. .
. . .

. . .
. . .

. . .
. . .

.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

(13)

The collisionality � affects only the diagonal entries of

the matrix. Once again, this is due to the fact that the

Hermite basis is an eigenfunction of the LB operator. Of

course, when numerically solving the linear problem in Eq.

(12), one has to truncate the matrix A, that is, one has to

choose the maximum number NH of Hermite modes in the

expansion of Eq. (10), by setting Cn,j¼ 0 for any n>NH

(other closures have been investigated, see, e.g., Refs. 36

and 37). This corresponds to defining the resolution in veloc-

ity space. It is precisely the inability to capture increasingly

finer scales in velocity space that gives rise to the phenom-

enon of recurrence in the numerical solutions of Vlasov

equation. This becomes particularly clear by looking at the

recurrence effect within the framework of the Hermite basis

expansion in velocity.

B. Eulerian Vlasov code (nonlinear analysis)

The other approach consists in the numerical solution of

Eqs. (1) and (2) through an Eulerian code based on a finite

difference scheme for the approximation of spatial and

velocity derivatives of f over the grid-points. Time evolution

of the distribution function is approximated through the split-

ting scheme first introduced by Filbet et al.38 [see Refs. 20

and 21 for details about the numerical algorithm], which is a

generalization of the well-known splitting scheme discussed

in Ref. 1. We impose periodic boundary conditions in physi-

cal space and f is set equal to zero for jvj > vmax, where
vmax¼ 6vth,e. Phase space is discretized with Nx grid points in

the physical domain and Nv points in the velocity domain.

Finally, the time step Dt has been chosen in such a way to

respect the Courant-Friedrichs-Levy condition39 for the

numerical stability of time explicit finite difference schemes.

The plasma is initially in an equilibrium state, and we

perturb the system through an oscillating density perturba-

tion which produces, through the Poisson equation, a pertur-

bative electric field of amplitude dE.
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III. LANDAU DAMPING

In this section, recurrence and collisional effects on this

phenomenon are described for the case of the Landau damp-

ing of a Langmuir wave.

First, we study a collisionless (�¼ 0) linear Landau

damping case, for the wavenumber k¼ k1¼ 2p/L¼ 0.35

(being L¼ 18), by means of the Fourier-Hermite decomposi-

tion with NH¼ 800. The system is initially perturbed through

a spatially sinusoidal electric field perturbation, which trans-

lates, in the Fourier-Hermite space, to initialize the vector ~Cj

as (1, 0, 0,…)T (the electric field is proportional to C0).

Figure 1 shows the temporal evolution of the absolute

value of the Hermite coefficients jCnj in logarithm scale.

Since the filamentation in velocity space naturally produces

small velocity scales, Hermite coefficients of increasingly

higher modes are excited. When the largest mode gets

excited, the truncation of the series acts as a reflecting bound-

ary (around time T� 75), and the perturbation travels back

towards lower modes. Around time T� 150, the electric field

damping is abruptly interrupted and a value close to the initial

value is restored. Let us note that, although the electric field

will not be affected until the recurrence time T� 150, the dis-

tribution function is spuriously altered from time T� 75, that

is when the perturbation reflects on the boundary.

As we mentioned earlier, the effect of a non-null colli-

sionality in the Vlasov-Poisson linear operator is to modify

the spectrum of eigenvalues. Landau damping is not anymore

due to the phase-mixing of a continuous set of neutral mode.

Moreover, for a large enough value of �, it appears as the

least-damped eigenvalue of the system. This is shown in

Figure 2, where, for the same value of k¼ k1¼ 0.35, we show

the spectrum of the matrix A for four increasing values of

collisionality: �¼ 5� 10�5, 1� 10�4, 2� 10�4, and

5� 10�4 (respectively, in black, red, blue, and gold dots).

The damping rate c and the wave propagation frequency x
are, respectively, shown on the horizontal and vertical axes of

Fig. 2. The values corresponding to the theoretical Langmuir

roots (c¼ cL¼�3.37� 10�2 and x¼61.22), obtained

through the numerical evaluation of the Landau dispersion

function roots, are shown as black squares. We emphasize

that the spectrum of the matrix A differs from the spectrum

of the infinite-dimensional Vlasov-Poisson-LB operator. In

fact, while for the latter the Landau root is a discrete eigen-

value in the limit � ! 0, Figure 2 clearly shows that, in the

presence of a finite velocity resolution, a small collisionality

acts to distort the discrete representation of the Case-Van

Kampen continuum. In other words, a sufficiently large colli-

sionality value (depending on the velocity resolution) is

needed in order to recover the Landau root as a discrete

mode. Indeed, it is clear that, for �¼ 5� 10�4 (gold points),

the spectrum exhibits two eigenvalues overlapping with the

proper Landau roots value and, therefore, the proper Landau

damping is restored.

In order to clarify the behavior of the coefficients jCnj in
the case where the collisionality restores the proper Landau

damping (i.e., �¼ 5� 10�4), we show in Fig. 3 the temporal

evolution of the Hermite coefficients jCnj. Clearly, the

reflecting effect discussed for Fig. 1 has now completely

vanished, and the electric field damping does not show any

recurrence. Since the collisional operator damps the high

Hermite modes or, in other words, since collisional effects

stop the production of small velocity scales, the velocity fila-

mentation is not correctly captured.

FIG. 1. Temporal evolution of the Hermite coefficients jCnj (in logarithm

scale) as a function of the Hermite mode n and the time t for the collisionless
�¼ 0 case.

FIG. 2. Spectrum of the matrix A for four increasing values of collisionality:

�¼ 5� 10� 5, 1� 10�4, 2� 10�4, and 5� 10�4, respectively, in black, red,

blue, and gold dots. The black squares represent the Landau roots.

FIG. 3. Temporal evolution of the Hermite coefficients jCnj as a function of

the Hermite mode n and the time t for the collisional �¼ 5� 10�4 case.
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In order to complete our analysis, we numerically solve

Eqs. (1) and (2) through the finite-difference numerical code

presented earlier, for different values of the collisional fre-

quency �. We set the initial sinusoidal density perturbation

such that the perturbation electric field amplitude is

dE¼ 10�3. The phase space is discretized with Nx¼ 64 and

Nv¼ 101 points. Let us remark that, with the parameters

choice just described, the recurrence time is Trec¼ 2p/kDv ’
150.

The time evolution of the logarithm of the absolute

value of the first Fourier component k¼ k1 of the electric

field log jEkjðtÞ is shown in Fig. 4. The black, red, and blue

lines correspond, respectively, to the collisionless case

(�¼ 0), intermediate collisional case (�¼ 5� 10�5), and

stronger collisional case (�¼ 5� 10�4). The last case is the

case in which the Landau damping root is recovered in the

spectrum shown in Fig. 2, thanks to the effect of collisions.

The red and blue dashed lines in Fig. 4 indicate the theoreti-

cal Landau damping rate cL¼�3.37� 10�2 and the recur-

rence time t¼ Trec ’ 150, respectively.

For the three cases, the electric field spectral component

evolution is approximately the same for t< Trec, and the

electric field is damped at the proper Landau damping rate

cL. Then, around t¼ Trec ’ 150, the collisionless and the

intermediate collisional cases (black and red solid lines of

Fig. 4) present a fake “jump” in the signal due to the initial

state recurrence problem. On the other hand, in the stronger

collisional case �¼ 5� 10�4 (blue solid line of Fig. 4), the

recurrence effect disappears and the unphysical “jump” is

completely suppressed by collisional effects. It is worth to

note that, in this case, the recurrence does not occur neither

at times multiples of the recurrence period.

Based on the results presented above, the inclusion of a

weakly collisional operator to prevent the numerical recur-

rence effect might look convenient; however, the consequen-

ces of including collisionality into the Vlasov-Poisson

system must be investigated with care.

Figure 5 shows the difference between the damping rate

cM of the least damped mode and the damping rate cL of the
Landau root, as a function of the collisional rate �, for three
different values of k¼ 0.35, 0.45, and 0.55 (black, red,

and blue lines, respectively). As explained in Figure 2, for

�! 0, and fixed velocity resolution, the Case-Van Kampen

spectrum28,29 is recovered (see Fig. 2), and cM ! 0. The

intersection between the red dashed and the solid lines indi-

cates the value of collisionality that is required to recover the

correct Landau damping as a discrete eigenmode. Moreover,

bearing in mind that both cM and cL are negative quantities,

values above the red-dashed line in the figure indicate that

the collisional rate is not large enough to recover the Landau

damping as the least damped eigenvalue, while values below

the red-dashed line indicate over-damping with respect to

the Landau damping. Figure 5 clearly indicates that there is

not a single value of collisionality that would allow to

recover the correct Landau damping for a spectrum of sev-

eral wavenumbers. Since larger wavenumbers are subject to

stronger damping, they would require a larger collisional

rate.

Moreover, if the initial field amplitude is increased in

order to explore the nonlinear evolution of the Landau damp-

ing, the collisionality, which was able of preventing recur-

rence in the linear simulation, becomes strong enough to

smooth the nonlinear physical features of the Landau damp-

ing. In order to clarify this point, we perform a simulation

with the same parameters of the linear one explained above

(see Fig. 4) and we increase dE¼ 10�1. Figure 6(a) shows

the time evolution of log jEkjðtÞ for k¼ k1 for the collision-

less case (black solid line) and for the collisional case

�¼ 5� 10�4 (red solid line). The blue dashed line in Fig. 6

indicates the recurrence period Trec¼ 2p/kDv ’ 150. We

remark that this specific value of collisional frequency is the

one which prevents recurrence effects in the linear case, still

preserving the correct value of Landau damping.

It is clear that, in the non-linear collisionless case, the

Landau damping is arrested by nonlinear effects (particle

trapping) and, as a consequence, the electric field starts oscil-

lating around a nearly constant saturation level. On the other

hand, in the collisional case, the physical scenario changes

drastically and the electric field amplitude displays evident

collisional damping.

In phase space, nonlinear effects manifest as the genera-

tion of a vertical trapping population, moving with velocity

close to the wave phase speed (v/ ’ 3:50). This is shown in

Figs. 6(b) and 6(c) where the contour plots of the distribution

FIG. 4. Temporal evolution of log jEkjðtÞ with k¼ k1. The black, red, and

blue lines indicate, respectively, �¼ 0, �¼ 5� 10�5, and �¼ 5� 10�4. The

red and blue dashed lines show, respectively, the theoretical damping with

Landau damping cL and the instant time t¼ Trec.

FIG. 5. The black, red, and blue lines show the difference between the

damping rate cM of the least damped mode and the damping rate cL of the

Landau root, as a function of the collisional rate �, for three different values
of k¼ 0.35, 0.45, and 0.55, respectively.
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function f(x, v) at time t¼ 400 for the collisionless case (b)

and for the collisional case (c) are reported. It is clear from

the comparison of panels (b) and (c) of Fig. 6 that collisions

prevent the generation of the phase-space trapping popula-

tion, since they work to smooth out any deformation of the

particle distribution function and to drive the system toward

thermal equilibrium. In other words, as soon as kinetic

effects produce distortions (and, consequently, sharp velocity

gradients) of the particle distribution, collisional effects

become more intense to keep the velocity distribution close

to a Maxwellian. Therefore, it is quite clear that collisional

effects are not able to prevent the recurrence problem with-

out destroying the plasma dynamics characteristics.

In order to understand whether changing the resolution

in velocity space3,4 affects the physical features of the sys-

tem, we performed additional simulations in collisionless

regime, increasing the number of gridpoints in the velocity

domain: Nv¼ 101, 201, 401, 1001, 2001, and 4001; Nv¼ 101

[indicated with blue crosses in Figs. 7(a) and 7(b)] corre-

sponds to the case depicted in Fig. 6.

We computed the following quantities as “proxies” of

numerical accuracy:

• The oscillation period Tosc of the wave, evaluated in the

time interval t� Trec);
• The time tmax where the electric field envelope reaches its

first maximum [’100 in Fig. 6(a)];
• The oscillation period s of the electric field envelope,

defined as the average of the difference between two con-

secutive maximum points in the log jEkjðtÞ evolution;

• The saturation electric field Ek,sat at which the electric

field spectral power saturates.

The quantities Tosc and tmax (not shown here) do not

depend on Nv, the relative variations between the two

extreme cases (Nv¼ 101 and Nv¼ 4001) being always

smaller than the 1%. On the other hand, in Fig. 7, we report

the dependence of Ek,sat (a) and s (b) on Nv. Clearly, these

two quantities approach a saturation value (red-dashed line)

as Nv increases. The relative variations between the values

obtained with Nv¼ 101 and the corresponding saturation val-

ues (red dashed lines) are about the 4% for Ek,sat and 10%

for s. We conclude that even in the nonlinear case shown in

Fig. 6, the limited resolution in the velocity domain slightly

affects the physical evolution of the system. However, as dis-

cussed above, adding a collisional operator to eliminate these

unphysical effects produces drastic changes in the kinetic

aspects of the dynamics with respect to the collisionless

case.

IV. BUMP-ON-TAIL INSTABILITY

In this section, the recurrence effects on the bump-on-

tail instability are described by performing a similar analysis

to that performed in Sec. III. The initial distribution function

is the following:

f0 vð Þ¼ n0

2pT0ð Þ1=2
exp � v2

2T0

� 	
þ nb

2pTbð Þ1=2

� exp � v�Vbð Þ2
2Tb

 !
þexp � vþVbð Þ2

2Tb

 !" #
: (14)

The core density and temperature are, respectively,

n0¼ 0.98 and T0¼ 1, while the bump density, mean velocity,

and temperature are nb¼ 0.01, Vb¼ 4, and Tb¼ 0.4, respec-

tively. Is it clear that f0(v) represents a Maxwellian distribu-

tion function to which two bumps are superimposed at both

positive and negative side of the velocity domain. Moreover,

the velocity symmetry in the velocity shape of f0(v) guaran-
tees an initial null current. In Hermite space, the parity of

f0(v) translates to having Ceq
n ¼ 0 for all odd n.

First of all, as performed in Sec. III, we study the

collisionless (�¼ 0) linear evolution of the bump-on-tail

FIG. 6. (a) Temporal evolution of log jEkjðtÞ with k¼ k1 for the collisionless case (black line) and the collisional �¼ 5� 10�4 case (red line). The blue dashed

vertical line indicates the recurrence period Trec. The distribution function around the phase speed v ¼ v/ at the final time instant f(x, v, t¼ tfin) is shown in pan-
els (b) and (c) for the collisionless (b) and collisional (c) case.

FIG. 7. The oscillation period of the electric field envelope s (a) and the sat-

uration electric field Ek,sat (b) as a function of Nv. The blue crosses indicate

the Nv case depicted in Fig. 6.
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instability onset for k¼ k1¼ 2p/L¼ 0.25 (being the plasma

length L¼ 25) by perturbing initially the system through a

spatially sinusoidal electric field perturbation. Here, the

Hermite modes number is NH¼ 400. Figure 8 shows the tem-

poral evolution of the absolute value of the Hermite coeffi-

cients jCnj. Only the first 100 modes are shown, to better

appreciate the recurrence on the low order modes. As in

Fig. 1 for the Landau damping, the filamentation creates

small velocity scales and, due to the truncation of the

Hermite series—which corresponds, in the Eulerian code, to

the presence of a finite velocity grid size—the boundary

reflects back the perturbation towards lower modes. The main

difference with respect to the Landau damping case is that

now there is an eigenmode whose amplitude grows exponen-

tially in time. The eigenmode has a certain structure in

Hermite space and is localized between modes 5 and 10.

Once the filamentation bounces back because of the trunca-

tion of the series, the unstable eigenmode is perturbed, around

time T� 150. Therefore, in the bump-on-tail case, the recur-

rence is much more evident as a fake perturbation acting on

the unstable eigenmode, rather than on the electric field. In

fact, as we show in the following, the recurrence of the elec-

tric field is more modest than for the Landau damping case.

In order to clarify how the recurrence acts on the insta-

bility onset, we perform some Eulerian simulations where

the phase space is discretized with Nx¼ 128 point, while Nv

is variable in order to change the recurrence period:

Nv¼ 101 (Trec ’ 200), Nv¼ 201 (Trec ’ 400), and Nv¼ 1001

(Trec ’ 2000). We perturb the system through a sinusoidal

density perturbation whose wavenumber is k¼ k1¼ 0.25.

The density perturbation amplitude is dn¼ 2.51� 10�6

which corresponds to a perturbed electric field of amplitude

dE¼ 10� 5. By evaluating the dispersion function roots

of the Vlasov equation, we can calculate, for the specific

wavenumber, the linear growth rate of the instability cthI ¼
9:20� 10�3 and the wave phase speed v/ ¼ 3:90.

Figures 9(a)–9(b) show, respectively, the temporal evo-

lution of log jEkjðtÞ with k¼ k1 and the phase space contour

plot at the final time of the simulation t¼ tfin for the high

resolution case (Nv¼ 1001). Clearly, the instability is not

affected by the recurrence, and in the linear stage, the field

amplitude grows up exponentially in accordance with the

theoretical prediction [red dashed line in Fig. 9(a)]. As non-

linear effects become important, the field saturates at a con-

stant value and in the phase space, a BGK-like structure32,33

is formed [see Fig. 9(b)]. The phase space structure is well-

localized around the phase speed v ¼ v/ and its width is

quite in accordance with the theoretical prediction.

In contrast to the case just shown, when the velocity re-

solution decreases, recursive effects occur. Panels of Fig. 10

show the results of two simulations with resolution Nv¼ 101

(left column) and Nv¼ 201 (right column). For each column,

the top panel [Figs. 10(a) and 10(b)] describes the temporal

evolution of log jEkjðtÞ, while the center panel [Figs. 10(c)

and 10(d)] displays the quantity DEk%, defined as the relative

difference (expressed in percentage) between jEkjðtÞ at a

given resolution and jEkjðtÞ for the collisionless recurrence-

free case. Finally, the bottom contour plot [Figs. 10(e) and

10(f)] exhibits the distribution function f(x, v, t¼ tfin) at the
final time and around the phase speed v ¼ v/. Let us remark

that, in order to better visualize the phase space structures in

Figs. 10(e) and 10(f), we performed an interpolation of the

distribution function over a more resolved grid without alter-

ing the physical features of the phase space structure itself.

It is clear that the recurrence also manifests in the insta-

bility onset. By focusing on the linear stage of the instability

growth, the electric field amplitude seems to exponentially

increase at a rate in accordance with the theoretical expecta-

tions, represented with red dashed lines in Figs. 10(a) and

10(b). Moreover, as introduced above, in contrast to the

Landau damping case, the recurrence effect does not strongly
FIG. 8. Temporal evolution of the Hermite coefficients jCnj as a function of

the Hermite mode n and the time t for the collisionless �¼ 0 case.

FIG. 9. (a) Temporal evolution of log jEkjðtÞ with k¼ k1 for the collisionless
recurrence-free (Nv¼ 1001) case. The red dashed line represents the theoret-

ical growth expectation expðcthI tÞ. (b) Contour plot of the distribution func-

tion around the phase space v ¼ v/ at the final time instant f(x, v, t¼ tfin).
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manifest as a fake jump around the recurrence time t¼ Trec.
However, by analyzing the temporal evolution of DEk% [see

Figs. 10(c) and 10(d)], a abrupt increase of DEk% is observed

around the recurrence period, shown in Figs. 10(c) and 10(d)

with blue dashed lines. This discontinuity is due to recursive

effects, and it means that, after the recurrence period, the

electric field evolution in the case with a lower resolution

strongly departs from the recurrence-free case (DEk% ’
100%). Thus, although recursive effects cannot be appreci-

ated in the linear stage of the instability growth by looking

directly at Figs. 10(a) and 10(b) (the scale is logarithmic and

a variation about the 100% cannot be easily highlighted), the

field evolution is actually disturbed by recurrence.

Furthermore, recurrence phenomena affect the nonlinear

evolution of the instability. Effectively, by focusing on Figs.

10(a) and 10(b), in the case without recurrence, the electric

field power opportunely saturates at a constant value (red

line) while, on the other hand, in the cases with recurrence,

the electric field does not saturate and it continues to slowly

increase. Finally, by focusing on the distribution function at

the final time instant t¼ tfin [see Figs. 10(e) and 10(f)], in

both cases, a phase space structure is produced around the

correct phase speed. By comparing these phase space struc-

tures with the hole created in the recurrence-free case [Fig.

9(b)], some differences clearly reveal. First, phase space

structures obtained in the cases with recurrence are less

resolved compared to the one of the recurrence-free cases,

and this is obviously related to the different velocity grid

size: effectively, since the velocity grid size is smaller in the

recurrence-free case, finer scales are naturally created com-

pared to the cases at lower resolution. Moreover, the vortex

width seems to be slightly wider in the Nv¼ 101 case [Fig.

10(e)] compared to both the collisionless recurrence-free

case [Fig. 9(b)] and to the Nv¼ 201 case [Fig. 10(f)]. In other

words, since the electric field does not saturate in the pres-

ence of recursive effects, the phase space structure tends to

increase its width.

The effects of the initial state recurrence on the bump-

on-tail instability represent a novel and quite unexpected fea-

ture in the analysis of the recursive phenomena. Both linear

and nonlinear stages of the instability are affected by recur-

rence: the electric field evolution departs from the evolution

in the case without recurrence (Nv¼ 1001) around t¼ Trec.
Furthermore, the nonlinear saturation, which is properly

retained in the case at high resolution, is interrupted by

recurrence as the velocity grid size gets larger. Moreover,

due to the absence of the electric field saturation, the distri-

bution function shows a vortex properly centered around the

right phase speed but whose width tends to be bigger com-

pared to the case without recurrence. Finally, although initial

state recurrence phenomena are often related to linear physi-

cal problems, here we have found some new and interesting

recurrence effect features which occur in the nonlinear

regime.

In order to explore if a collisionality described by the

LB operator could represent a good way to prevent numeri-

cal recurrence in the case of the bump-on-tail instability, we

focus on the Nv¼ 201 resolution case and we perform

several collisional simulations by changing the collisional

frequency �.
Figs. 11(a)–11(c) display, through black lines, the

temporal evolution of log jEkjðtÞ with k¼ k1 for the cases:

�¼ 1.5� 10�6 (a), �¼ 4.1� 10�6 (b), and �¼ 6.6� 10�6 (c).

In each panel of Fig. 11, red solid lines indicate the evolution

in the collisionless case without recurrence [the same shown in

Fig. 9(a) and in Figs. 10(a) and 10(b)], while the red dashed

line shows the theoretical expectation for the instability growth

curve expðcthI tÞ, being cthI ¼ 9:2� 10�3.

FIG. 10. Recurrence effects on the

bump-on-tail instability for the

Nv¼ 101 (left column) and Nv¼ 201

(right column) simulations. The top

panels (a) and (b) show the temporal

evolution of log jEkjðtÞ with k¼ k1 for

the low-resolution case (black line)

and for the recurrence-free case (red

solid line), while the red dashed line

indicates the theoretical growth expec-

tation expðcthI tÞ. The central panels (c)

and (d) display the quantity DEk%

(black line) and the recurrence period

t¼Trec (blue dashed line). Finally, the

bottom panels (e) and (f) visualize the

distribution function contour plot

around the phase space v ¼ v/ at the

final time instant f(x, v, t¼ tfin).
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As expected, collisions inhibit the instability and tend to

restore thermal equilibrium. However in the case �¼ 1.5

� 10�6 [see Fig. 11(a)], collisions weakly affect the electric

field evolution which, as in the collisionless case, do not sat-

urate and overtake the recurrence-free case evolution [red

line in Fig. 11(a)].

As collisional frequency increases, the electric field evo-

lution tends to be dissipated. In the intermediate case

�¼ 4.1� 10�6 [see Fig. 11(b)], the electric field reaches, at

the end of the simulation, almost the same power of the colli-

sionless case without recurrence; however, its evolution

departs from the reference red curve around t ’ 600, where

the recurrence-free case [red line in Fig. 11(b)] presents a

stronger power level than the collisional Nv¼ 201 case

[black line in Fig. 11(b)]. On the other hand, in the case

�¼ 6.6� 10�6 [see Fig. 11(c)], a significant difference

between the two evolutions appears at even smaller time

instants and collisions clearly affect the linear instability

regime. In particular, the linear growth rate in the collisional

Nv¼ 201 case [black line in Fig. 11(c)] is significantly

smaller than the collisionless Nv¼ 1001 case [red line in

Fig. 11(c)]. Moreover, as in the collisionless recurrence-free

case, at the final stages of the simulation, the electric field

spectral power exhibits an almost flat behavior at a lower

power value compared to the collisionless recurrence-free

case.

In order to point out how phase space is affected by colli-

sions, Figs. 12(a)–12(c) show the contour plots of the distribu-

tion function f(x, v, t¼ tfin) at the final time instant t¼ tfin and
zoomed around the phase speed v ¼ v/ for the cases:

�¼ 1.5� 10�6 (a), �¼ 4.1� 10�6 (b), and �¼ 6.6� 10�6 (c).

As in Fig. 10(e) and 10(f), even in Fig. 12(a)–12(c), we per-

formed an interpolation of the distribution function over a

more resolved grid. In all the three cases shown in Fig.

12(a)–12(c), a phase space structure is observed around the

wave phase speed and its width reduces as collisional fre-

quency increases. Clearly, as collisions become stronger, phase

space structures are smoothed out and present a smaller size.

To conclude this section, we highlight that, as collisional

frequency gets bigger, the instability is affected by collisions

FIG. 11. Temporal evolution (black line) of log jEkjðtÞ with k¼ k1 for the

case Nv¼ 201 and with collisional frequency �¼ 1.5� 10�6 (a),

�¼ 4.1� 10�6 (b), and �¼ 6.6� 10�6 (c), respectively. In each panel, the

red solid line shows the evolution of log jEkjðtÞ for the collisionless

recurrence-free (Nv¼ 1001) case, while the red dashed line displays the the-

oretical linear instability growth.

FIG. 12. The distribution function contour plots around the phase space v ¼ v/
at the final time instant f(x, v, t¼ tfin) for the case Nv¼ 201 and with collisional

frequency �¼ 1.5� 10�6 (a), �¼ 4.1� 10�6 (b), and �¼ 6.6� 10�6 (c).
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more intensely. Moreover, since collisions tend to restore the

equilibrium, they have been active since the initial stage of

the simulation (the initial distribution function is out of equi-

librium). Furthermore, they remain active until the equilib-

rium is recovered and incessantly work to smooth out all the

wave features (electric field signal and phase space struc-

tures). Therefore, at longer times (not shown here), the phase

space structures shown in Fig. 12 get smaller and disappear,

while the electric field signal shown in Fig. 11 is dissipated

by collisional effects. We conclude that, as in the nonlinear

Landau damping case, an artificial collisionality is not able

to prevent the initial state recurrence in the bump-on-tail

instability onset. In particular, we found two different sce-

narios: collisions are so weak that recurrence is still active

or, on the other hand, they affect both recurrence effects and

physical evolution of the system by deeply smoothing the

electric field and the phase space structure.

V. CONCLUSIONS

In this paper, we analyzed in detail the problem of the

initial state recurrence in a weakly collisional plasma, where

electron-electron collisions have been modeled through the

Lenard-Bernstein collisional operator.6 We focused on two

study cases: the Landau damping of a Langmuir wave and

the bump-on-tail instability onset. For both cases, the analy-

sis in the linear regime has been performed through the

decomposition of the linear Vlasov-Poisson system into

the Fourier-Hermite basis. In particular, the expansion of the

distribution function in terms of Hermite functions separates

naturally different velocity scales, and it allows to better

describe recursive effects and appreciate the role of the colli-

sional operator in phase space. Moreover, the analysis has

been extended to the nonlinear regime through a 1D–1V

Eulerian collisional Vlasov-Poisson code, already tested and

used in previous works (see Refs. 20 and 21).

Recently, some authors (see Refs. 26 and references

therein) pointed out that an opportune collisionality can pre-

vent the onset of recursive effects and restore the correct

Landau damping. This indication suggested us to investigate

whether the inclusion of an artificial collisionality could be

used to prevent recurrence in numerical simulations without

the loss of physical details due to collisional effects.

However, we have shown that the collisional frequency �
which is suitable for preventing numerical recurrence in the

linear regime depends on the perturbation wavenumber;

furthermore, collisional effects become important when the

system evolves to the nonlinear regime and, for the same

value of collisionality which prevents recursive effects in

the linear stage, any nonlinear wave is strongly dissipated by

collisional effects.

Finally, we pointed out that numerical effects associated

to the generation of fine velocity scales can modify the phys-

ical features of the system evolution even in nonlinear

regime. This has been shown by focusing on the nonlinear

Landau damping phenomenon and on the bump-on-tail

instability both in linear and nonlinear regime. Our results

indicate that filamentation-like and recursive effects, often

associated with evolution in linear regime, can also be

important in the nonlinear case. We also conclude that the

addition of a collisional operator, with the aim of preventing

the recurrence of the initial state and other numerical effects

related to limited resolution in the velocity domain, signifi-

cantly changes the evolution of nonlinear waves and the cor-

responding phase space portrait.
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