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Kinetic Alfv�en waves represent an important subject in space plasma physics, since they are thought

to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at

short wavelengths (of the order of the proton gyro radius qp and/or inertial length dp and beyond). A

full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these

scales can provide important clues on the problem of the turbulent dissipation and heating in

collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in

detail the features of the kinetic Alfv�en waves at proton kinetic scales, in typical conditions of the

solar wind environment (proton plasma beta bp¼ 1). In particular, linear and nonlinear regimes of

propagation of these fluctuations have been investigated in a single-wave situation, focusing on the

physical processes of collisionless Landau damping and wave-particle resonant interaction.

Interestingly, since for wavelengths close to dp and bp ’ 1 (for which qp ’ dp) the kinetic Alfv�en

waves have small phase speed compared to the proton thermal velocity, wave-particle interaction

processes produce significant deformations in the core of the particle velocity distribution, appearing

as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid

Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space,

three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs

from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901583]

I. INTRODUCTION

The solar wind is a turbulent plasma,1 mainly composed

by protons and electrons, which can be considered collision-

less in good approximation. Because of the turbulent charac-

ter of the interplanetary medium, the energy injected into it

at large scales as Alfv�enic fluctuations is transferred towards

short scales along the turbulent spectrum. In such a collision-

less medium, what physical mechanism drives the short-

scale dissipation of the energy injected at large scales still

remains an unanswered question and attracts nowadays a sig-

nificant scientific interest. In fact, the identification of the

fluctuations responsible for channeling the energy toward

short wavelengths and the full understanding of the dissipa-

tion mechanisms in the solar wind represent two top priority

subjects in space plasma physics.

The power spectrum of the solar-wind fluctuating fields

in the range of long wavelengths manifests a behavior remi-

niscent of the k�5=3 Kolmogorov power law for fluids,2–6 k
being the wavenumber. The Kolmogorov-like spectral

behavior extends down to a range of wavelengths close to

typical proton kinetic scales (the proton inertial length dp,

and/or the proton Larmor radius qp). Here, the features of the

spectra abruptly change with the appearance of a spectral

break7–9 and kinetic effects presumably govern the system

dynamics.

In these range of scales and even down to typical electron

kinetic scales, many solar-wind observational analyses,9–14

theoretical works15–17 and numerical simulations18–20 suggest

that the so-called Kinetic Alfv�en waves (KAWs) can play an

important role in the mechanism of turbulent energy dissipa-

tion and heating. An extensive linear analysis of these waves

has been performed by Hollweg in 1999 (Ref. 21) (see also

references therein for a more complete view on the subject).

The fact that these fluctuations can be important in the devel-

opment of the solar-wind turbulent cascade is supported by

observational data which show that the distribution of wave-

vectors of long wavelength magnetic fluctuations has a signifi-

cant population quasi-perpendicular to the ambient magnetic

field.22,23

In this paper, we make use of the hybrid Vlasov-

Maxwell (HVM) code,24 to study numerically the character-

istics of the KAWs in linear and nonlinear regime, in the

range of spatial scales close to qp and for bp¼ 1 (for which

qp ’ dp). The HVM algorithm integrates numerically the

Vlasov equation for the proton distribution function in

multi-dimensional phase space. In the present work, we

restrict our analysis to the 1D-3 V (one dimension in physi-

cal space and three dimensions in velocity space) phase

space configuration. Within the HVM model the electrons

are considered as a fluid and a generalized Ohm equation is

employed for computing the electric field, which retains the

Hall term and the electron inertia effects. Quasi neutrality is

assumed and the displacement current is neglected in the

Ampere equation, making the assumption of low frequency

dynamics. Finally, an isothermal equation of state for the

scalar electron pressure is employed to close the HVM sys-

tem (for more details on the HVM equations and on the nu-

merical algorithm see Refs. 24 and 25). The HVM code is a

well-tested algorithm which has been successfully
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employed for numerical studies of plasma turbulence26–32

and ion-cyclotron heating.33

We present the results of a series of linear and nonlinear

simulations, in a situation of single-wave propagation, with a

single wavenumber slightly larger than the proton skin depth

wavenumber. Our goal is to perform a detailed analysis of

the process of wave-particle interaction, in linear and nonlin-

ear regime, involving resonant protons and KAWs, in typical

conditions of the solar wind environment and in a range of

spatial scales close to dp. As discussed in detail in the follow-

ing, our numerical results show that the efficient resonant

interaction between the KAWs and the protons can signifi-

cantly shape the particle distribution function, making the

plasma depart from the Maxwellian configuration of thermo-

dynamical equilibrium.

This paper is organized as follows. In Sec. II, the disper-

sion relation of the KAW and corresponding eigenmodes for

magnetic and velocity perturbations are derived in the frame-

work of linear two-fluid theory, under the assumptions of

quasi-neutrality and negligible displacement current. Section

III is devoted to the description of the hybrid Vlasov-

Maxwell simulations and of the numerical results for the

propagation of the KAWs, both in linear and nonlinear

regimes. We conclude and summarize in Sec. IV.

II. TWO-FLUID DISPERSION RELATION AND
EIGENMODES

In this section, we revisit the two-fluid approach to

derive the dispersion relation and the eigenmodes of the

KAWs in linear approximation. To make contact with the

HVM model, the set of linear two-fluid (protons and elec-

trons) equations have been solved under the assumption of

quasi-neutrality (ne ’ np¼ n) and by neglecting the displace-

ment current in the Ampere equation. Moreover, proton and

electron scalar pressures have been assigned a general adia-

batic equation of state. This analysis allows us to specialize

to the hybrid case the linear expectations for the wave fre-

quency of KAWs obtained in previous works (see, for

instance, Ref. 21). The linear results obtained in this section

will be used to guide the HVM simulations discussed in

detail in the following. In particular, the linear frequency and

the expressions of the eigenmodes for the KAW branch will

be employed to initialize the HVM simulations both in linear

and nonlinear regime.

We choose the reference frame pictured in Fig. 1, in

which the wave vector k¼ (k, 0, 0) is along the positive x
direction and the background magnetic field B0¼ (B0x, B0y, 0)

lies in the x-y plane, inclined at an angle h with respect to

the x axis. In these conditions the problem is intrinsically one

dimensional in physical space.

By coupling the continuity equations for particle density

and momentum equations to Maxwell equations for fields,

under the assumptions discussed above, after some algebra,

one can obtain the dimensionless wave dispersion relation in

the form of a sixth-order polynomial equation, which can be

written as

Ax6 þ Bx4 þ Cx2 þ D ¼ 0; (1)

where

A ¼ ð1þ k2d2
e Þ

2;

B ¼ �ð1þ k2d2
e Þk2½1þ cos2hþ bð1þ k2d2

e Þ�
�k4 cos2h;

C ¼ k4 cos2h½1þ bk2 þ 2bð1þ k2d2
e Þ�;

D ¼ bk6 cos4h;

where b is the total plasma beta.

The above equations have been rescaled by normalizing

time by the inverse proton cyclotron frequency X�1
cp , veloc-

ities by the Alfv�en speed VA, mass by the proton mass mp,

and lengths by the proton inertial length dp¼VA/Xcp. In

these units, the electron inertial length is given by de¼ (me/

mp)1=2. Also, the modulus of the background magnetic field

is set B0¼ 1. For now on, all physical quantities will be

rescaled by the characteristic parameters listed previously.

Equation (1) can be solved analytically by making use

of the so-called Vieta’s substitution,34 to obtain values of the

wave frequencies for any given angle h, any value of b and

for any range of wave numbers. In Fig. 2, we show, in a log-

arithmic plot, the three roots of Eq. (1), obtained for positive

FIG. 1. The reference frame chosen for the study of KAWs; the wavevector

k is along the x direction, while the background magnetic field B0 lies in the

x-y plane, inclined at an angle h with respect to k.

FIG. 2. The three roots of Eq. (1), i.e., FAST (black-solid curve), SLOW

(red-solid curve), and KAW (blue-solid curve) branches, for h¼ 85�, b¼ 1

and in the range of wavenumbers around k¼ 1. The yellow-dashed curves

represent the solutions of Eq. (1), in the case of cold plasma (b � 1), for

which the SLOW branch disappears.
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values of x, for a specific case with h¼ 85� and b¼ 1, in the

range of wavenumbers around the proton skin depth wave-

number (k¼ 1). In this plot, the black (red) solid line repre-

sents the branch of fast (slow) magnetosonic waves, while

the blue solid line refers to the KAW branch. The yellow-

dashed curves are the solutions obtained under the cold

plasma approximation (b� 1), for which the slow magneto-

sonic branch disappears.

Moreover, from the analysis of the linearized two-fluid

equations, one can also get explicit expressions of the

eigenmodes for magnetic (dB) and velocity (du) perturba-

tions, which read

dBz ¼ 2a cosðkxÞ; (2)

dBy ¼ �
cos h
x

1� x2 1þ k2d2
e

� �
k2 cos2h

� �
2a sin kxð Þ; (3)

duz ¼ �
k cos h

x
2a cos kxð Þ; (4)

duy ¼
k cos2h

x2
1� x2 1þ k2d2

e

� �
k2 cos2h

� �
2a sin kxð Þ; (5)

dux ¼
k sin 2hð Þ

2 x2 � bk2ð Þ 1� x2 1þ k2d2
e

� �
k2 cos2h

� �

� 2a sin kxð Þ; (6)

where a is a real number.

It is worth noting from the expressions above that the

magnetic and the velocity eigenmodes have elliptic polariza-

tion and a p/2 phase displacement.

The previous expressions for magnetic and velocity pertur-

bations will be used to initialize the HVM simulations of

KAWs, presented in Sec. III. Clearly, Eqs. (2)–(6) are not exact

eigenmodes of the HVM equations; nevertheless, as we will

show in the following, when used as initial perturbations in the

HVM simulations, they allow to excite predominantly one

desired wave mode, by selecting the appropriate value of x for

a given k. For our purpose of studying numerically the features

of the KAWs, this is crucial since it prevents the excitation of

mixture of modes which would complicate the analysis.

III. HYBRID VLASOV-MAXWELL SIMULATIONS

We solve numerically the HVM equations24 in 1D-3 V

phase space configuration. The set of HVM equations in

dimensionless units can be summarized in the form

@f

@t
þ v � rf þ Eþ v� Bð Þ � @f

@v
¼ 0; (7)

E� d2
eDE¼� u�Bð Þ þ 1

n
j�Bð Þ � 1

n
rPe

þd2
e

n
r �Pþr � ujþ juð Þ �r � jj

n

� �� �
; (8)

@B

@t
¼ �r� E; r� B ¼ j; (9)

where f is the proton distribution function, E and B the elec-

tric and magnetic fields, respectively, and j the total current

density (the displacement current has been neglected in the

Ampere equation and quasi-neutrality is assumed). In Eq. (8)

the following compact notations have been used (see Ref. 24

for more details):

r � ujþ juð Þ½ �i ¼
@

@xj
uijj þ jiujð Þ; (10)

r � jj

n

� �� �
i

¼ @

@xj

jijj
n

� �
: (11)

In 1D-3 V configuration, the spatial variations occur along

the x-direction, but each vector has three components; in this

case, r¼ d/dx, D¼ d2/dx2. The proton density n, bulk veloc-

ity u, and pressure tensor P are obtained as velocity

moments of f. The scalar electron pressure Pe is assigned an

isothermal equation of state Pe¼ nTe, where Te is the elec-

tron temperature. As in Sec. II, the background magnetic

field is chosen to lie in the x-y plane (see Fig. 1).

The numerical algorithm employed to solve the above

HVM Eqs. (7)–(9) is based on the coupling of the well-

known splitting method35 and the Current Advance

Method36 for the electromagnetic fields, generalized to the

hybrid case in Ref. 24. Periodic boundary conditions are

employed in physical space, while in the velocity domain the

distribution function is set equal to zero at jvj > vmax, where

vmax fixes the limits of the numerical domain in each velocity

direction. For each simulation discussed in the following, the

time step Dt has been chosen in such a way to satisfy the

Courant-Friedrichs-Levy condition,37 for the numerical sta-

bility of time explicit finite difference algorithms.

A. Linear regime

The numerical analysis of the linear regime of wave

propagation, presented in this section, is preparatory for the

study of the nonlinear regime discussed in the following.

These preliminary simulations can be, therefore, considered

as a benchmark to show that the HVM code is able to

describe properly the evolution of the KAWs and that the nu-

merical resolution employed is adequate to ensure a satisfac-

tory conservation of the HVM invariants (energy, mass,

entropy).

For the analysis of the linear regime, we simulate a

plasma embedded in a uniform magnetic field B0¼B0xex

þB0yey (see Fig. 1). At t¼ 0, protons have homogeneous

and constant density and Maxwellian distribution of veloc-

ities. We set bp ¼ 2v2
thp=V2

A ¼ 1 (vthp being the proton ther-

mal speed), while the electron to proton temperature ratio is

Te/Tp¼ 1 and the proton to electron mass ratio is set mp/me

¼ 100 (we point out that, for a realistic mass ratio, the elec-

tron skin depth de cannot be adequately resolved with the

numerical resolution chosen for the HVM simulations).

This initial condition is perturbed at t¼ 0 by imposing on

the system the magnetic and velocity perturbations in Eqs.

(2)–(6), calculated for the KAW solution, with a¼ 10�5

and k¼mk0, where k0¼ 2p/L is the fundamental wave num-

ber; we fixed m¼ 6, thus k ¼ 3d�1
p .

The length of the spatial box is L¼ 4p, while vmax

¼ 4.5vthp in each velocity direction. The numerical 1D-3 V

112107-3 V�asconez et al. Phys. Plasmas 21, 112107 (2014)
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phase space domain is discretized by Nx¼ 512 grid points in

physical space and NVy
¼ NVz

¼ 41 grid points along the vy

and vz directions. The number of grid points used to discre-

tized the vx direction has been chosen in such a way to avoid

effects of numerical recurrence. In fact, in the case of very

weak electric and magnetic fields, as it happens in linear re-

gime, Eq. (7) describes a motion close to free streaming and

its solution, in 1D physical space, can be written as

fkðv; tÞ ¼ f0ðvÞ exp½ikðx� vtÞ�. If the mesh spacing in the vx

velocity direction is Dvx ¼ 2vmax=NVx
, there is a numerical

recurrence occurring at TR¼ 2p/(kDvx). Therefore, if tmax is

the maximum time of the simulation, Dvx must be chosen in

such a way that tmax<TR, for a fixed value of k. For exam-

ple, for tmax¼ 125, k¼ 3 and vmax¼ 4.5vthp, one must choose

NVx
¼ 401 in such a way to have TR ’ 132> tmax.

From linear kinetic plasma theory,38 small-amplitude

waves in a uniformly magnetized plasma undergo Landau

damping if they have a component of propagation along the

background magnetic field B0; only particle moving along

B0 contribute to damping, because in a uniform magnetic

field there is no net motion of particles across the field. In

order to analyze the effects of Landau damping39 on the

KAW oscillations, as dependent on the propagation angle

with respect to B0, we performed 14 simulations for different

values of h (the angle between the wave vector and the back-

ground magnetic field) in the range 69� � h� 85�. In Fig. 3

we report, in semilogarithmic plot, the time evolution of the

absolute value of the m¼ 6 Fourier component of the mag-

netic fluctuation dBz,k(m¼ 6,t), normalized to its value at

t¼ 0, for h¼ 81�, 83�, 85� (blue-solid, red-solid, and black-

solid line, respectively). In agreement with linear kinetic

theory,38 the oscillation amplitude decays exponentially in

time, the damping rate c appearing strongly dependent on h
(the smaller h, the larger c). Note that for the simulation with

h¼ 85� we fixed tmax¼ 125, while simulations with smaller

h, for which heavily damped oscillations are recovered, have

been stopped at earlier time. The blue-dashed, red-dashed,

and black-dashed lines in this figure represent the best fits

for the damping rates of the oscillations, whose absolute

values result jcj ’ 0:24; 0:085; 0:009 for h¼ 81�, 83�, 85�,
respectively.

In order to show that the oscillations recovered in our

simulations are in fact KAWs, we have, first of all, per-

formed a Fourier analysis of the numerical signals, from

which we found that (i) no time transient is observed in the

wave oscillations and (ii) the x–k spectrum displays a single

excited wavenumber, to which corresponds a single domi-

nant frequency peak (secondary peaks have energy content

more than 104 times lower than the dominant one). This

means that even starting with a two-fluid initial condition, a

well defined kinetic normal mode has been excited.

Moreover, in Fig. 4, we plot the numerical results for the os-

cillation frequency x [blue diamonds in panel (a)], and for

the absolute value of the damping rate jcj [blue diamonds in

panel (b)], as functions of h, for the 14 simulations per-

formed. In panel (a), we also reported the theoretical predic-

tion for x¼x(h) on the KAW branch obtained from the

two-fluid approach (black-solid curve) discussed in Sec. II

[see Eq. (1)] and from a kinetic linear Vlasov solver (red-

solid curve). In panel (b), the solution of jcj ¼ jcðhÞj for the

KAW branch, obtained from a kinetic linear Vlasov solver,

FIG. 3. Time evolution of jdBz;kðm ¼ 6; tÞ=dBz;kðm ¼ 6; 0Þj, for a¼ 10�5

and for h¼ 81�, 83�, 85� (blue-solid, red-solid, and black-solid line, respec-

tively). The blue-dashed, red-dashed, and black-dashed lines represent the

best fits for the damping rates of the oscillations.

FIG. 4. Panel (a): dependence of the wave frequency x on the propagation

angle h, obtained from the linear HVM simulations (blue diamonds), linear

two-fluid theory (black-solid curve) and linear kinetic Vlasov solver (red-

solid curve). Panel (b): dependence of the absolute value of the damping

rate jcj on h, obtained from the linear HVM simulations (blue diamonds)

and from the linear kinetic Vlasov solver (red-solid curve).
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is indicated by a red-solid curve. We note that the linear

Vlasov solutions have been obtained by employing the

standard kinetic theory for an electron-proton plasma.40

However, in order to mimic the HMV system, we have con-

sidered the limit me/mp ! 0. Panels (a) and (b) in Fig. 4

show a nice agreement between numerical results and analyt-

ical (two-fluid and kinetic) predictions, demonstrating that

the fluctuations recovered in our HVM simulations can be

identified as KAWs.

To conclude this section, we shortly discuss the con-

servation of the HVM invariants during the simulations. In

particular, we consider the conservation of proton mass

and entropy and total energy. Concerning the latter quan-

tity, we point out that for the HVM Eqs. (7)–(9), a standard

conservation law cannot be derived for the total energy, as

a consequence of neglecting the displacement current in

the Ampere equation. In fact, by multiplying the proton

Vlasov Eq. (7) by v2/2, through integration over the whole

velocity space and over the 1D periodic spatial domain

D¼ [0, L] (the result can be easily generalized to the 3D

case in physical space), one gets the following dimension-

less equation:

ðL

0

@

@t

3

2
nTp þ

1

2
nu2 þ B2

2

� �
þ E � je

� �
dx ¼ 0; (12)

where jp¼ nu and je¼r�B� jp are proton and electron

current densities, respectively (we remind the reader that in

scaled units the proton mass is mp¼ 1 and the proton electric

charge is e¼ 1). In Eq. (12) one recognizes the contribution

of the thermal energy density 3/2nTp, of the kinetic energy

density 1/2nu2 and of the magnetic energy density B2/2,

while the term E�je represents the work of the electric field

on the electrons.

As anticipated before, Eq. (12) is not in the usual form

of conservation law; nevertheless, if one sets

Le ¼
ðL

0

dx

ðt

0

E � jedt0; EM ¼
ðL

0

B2

2
dx; (13)

Ekin ¼
ðL

0

nu2

2
dx; Eth ¼

ðL

0

3nTp

2
dx: (14)

Eq. (12) can be re-written in the following form:

@

@t
Le þ Eth þ Ekin þ EMð Þ ¼ 0 (15)

or, equivalently, as

Etot ¼ Le þ Eth þ Ekin þ EM ¼ const: (16)

The quantities Le, EM, Eth, and Ekin can be evaluated at each

time step in the HVM simulations, in such a way to control

the conservation of Etot.

For the linear simulations discussed in this section, typi-

cal relative mass variations are limited to 	10�5%, entropy

variations to 	0.036% and total energy variations to

	0.088%, confirming the adequacy of the numerical resolu-

tion adopted and the reliability of the numerical results.

B. Nonlinear regime

To investigate the nonlinear regime of propagation of the

KAWs, we considered six different simulations, whose typical

parameters (bp, Te/Tp, mp/me), initial condition and initial

magnetic and velocity perturbations are the same as those

described in Sec. III A, except for the amplitude of the pertur-

bations that is set now a¼ 0.15, 0.17, 0.19, 0.21, 0.23, 0.25,

respectively. The length of the spatial box is, as for the linear

simulations, L¼ 4p, while we set vmax¼ 5vthp. The number of

grid points in the spatial domain is Nx¼ 512 and in the three-

dimensional velocity domain we set NVx ¼ NVy ¼ NVz ¼ 91.

These nonlinear simulations follow the plasma dynamics up

to a time tmax¼ 1000. The typical relative variations of mass,

energy, and entropy for these nonlinear simulations are

	10�3%, 	1%, and 0.8%, respectively. We point out that in

nonlinear regime possible numerical recurrence phenomena

cannot be controlled in a simple way, since, for large ampli-

tudes of the electric and magnetic fields, the particle motion

can no longer be approximated as free-streaming. However,

the satisfactory conservation of the Vlasov invariants attests

the reliability of the numerical results.

In order to compare the evolution of the magnetic fluctu-

ations for large initial perturbation amplitudes with that

obtained in linear regime, in Fig. 5 we plot dBz,k(m¼ 6,t), for

h¼ 85�, in the cases with a¼ 0.15 [panel (a)] and a¼ 0.25

[panel (b)]. In the linear case (see Fig. 3), the magnetic oscil-

lations for h¼ 85� appear exponentially damped up to a time

t¼ 120. On the other hand, in the nonlinear regime pictured

FIG. 5. Time evolution of dBz,k(m¼ 6,t), for a¼ 0.15 [panel (a)] and

a¼ 0.25 [panel (b)], and for h¼ 85�.
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in Fig. 5, after a preliminary stage of exponential decay of

the wave amplitude, Landau damping is saturated by nonlin-

ear effects and, for both a¼ 0.15 and a¼ 0.25, the magnetic

fluctuations display characteristic envelope oscillations,

whose period appears to be inversely proportional to a
(larger values of a correspond to smaller envelope oscillation

periods). It is worth noting that no decay instability toward

smaller wavenumbers has been recovered during the simula-

tion, even though the wavelength of the imposed perturba-

tions is not the largest wavelength that fits in the spatial

simulation box; the KAW mode excited at t¼ 0 remains

dominant with a small amount of energy stored in its

harmonics.

The phenomenology described above is clearly reminis-

cent of the nonlinear saturation of Landau damping of elec-

trostatic waves, due to particle trapping.41–44 We analyzed in

detail the dependence of the period s of the envelope oscilla-

tions displayed in Fig. 5 on the amplitude a of the initial per-

turbations. Assuming a relation of the type s¼ ap, in Fig. 6

we show lnðsÞ versus lnðaÞ for the six nonlinear simulations

(black stars). The red-dashed line in this figure represents the

best fit of the numerical data; the best-fitting procedure gives

a value p¼�1.23.

Simple arguments help to understand how protons can

be trapped by a pseudo-potential and give rise to envelope

oscillations in the wave amplitude, as shown in Fig. 5 and in

analogy with the electrostatic case. Assuming spatial varia-

tions only in the x direction, in a reference frame moving

with the wave phase speed v/, the electric potential / can be

seen as a static potential, depending only on a single variable

n ¼ x� v/t. For a single proton with velocity v¼ (vx, vy, vz),

one can then derive a dimensionless energy conservation

law, in the form

E ¼
vx � v/ð Þ2 þ v2

y þ v2
z

2
þ / nð Þ ¼ const; (17)

/ðnÞ ¼ �
ðn

n0

Exðn0Þdn0; (18)

n0 being an arbitrary constant.

Moreover, conservation equations for the canonical mo-

mentum in y and z directions can be used

vy þ AyðnÞ ¼ vy0; vz þ AzðnÞ ¼ vz0; (19)

AyðnÞ ¼
ðn

n0

Bzðn0Þdn0; (20)

AzðnÞ ¼ �
ðn

n0

Byðn0Þdn0; (21)

vy0 and vz0 being two constants, and Ay(n), Az(n) the y and z
components of the magnetic potential. Eqs. (19) allow to

express ðv2
y þ v2

z Þ=2 as a function of n and, from Eq. (17),

one gets

E n; vxð Þ ¼
vx � v/ð Þ2

2
þ / nð Þ þ 1

2
vy0 � Ay nð Þ
� 	2

þ 1

2
vz0 � Az nð Þ½ �2 ¼ const: (22)

The above equation can be re-written as

E n; vxð Þ ¼
vx � v/ð Þ2

2
þ U nð Þ ¼ const: (23)

Here, UðnÞ ¼ /ðnÞ þ ½vy0 � AyðnÞ�2=2þ ½vz0 � AzðnÞ�2=2 can

be viewed as a pseudo-potential which can trap resonant

protons.

As the HVM code allows for a clean low-noise descrip-

tion of the proton distribution function, the role of nonlinear

kinetic effects on the plasma dynamics, and in particular of

the trapping of protons in the pseudo-potential U, can be

directly observed in phase space contour plots or in three-

dimensional velocity iso-surface plots of f.
In Fig. 7, we report the x � vx level lines of f calculated

at vy¼ vz¼ 0 (i. e., we selected the phase space along the

direction of k) at four different times for the simulation with

a¼ 0.25 (t¼ 300, 500, 700, 1000 from top to bottom). The

phase velocity of the fluctuations, evaluated through the

Fourier analysis on the numerical signals, is x/k ’ 0.2. In

panel (a) of Fig. 7, vortical phase space structures are clearly

visible in the velocity range around vx¼ 0. These phase

space vortices are typical signature of the presence of

trapped particle populations.42–44 The resulting complicated

phase space contour lines of f are determined by the nonlin-

ear interaction and beating of two counter-propagating sig-

nals (in our initial condition both positive and negative

values of the wavenumber are excited for a given positive

frequency). At larger times, in panel (b), (c), and (d), the

phase space structures with positive mean velocity move

along the positive x direction, while the ones with negative

mean velocity move in the negative x direction, giving rise

to different phase space shapes. Due to the fact that the phase

velocity of the fluctuations is small compared to both VA and

vthp, these strong phase space distortions are located in the

middle of the core of the proton distribution function, con-

fined in the velocity range �1 � vx � 1 for each spatial

position.

Figure 8 shows four different slices of the x � vx proton

distribution function at t¼ 300, evaluated at four different

spatial positions x0 ’ 2.5, 3.5, 8.5, 10 (red, black, blue, and
FIG. 6. Dependence of the logarithm of the wave envelope oscillation period

on the logarithm of the initial perturbation amplitude.
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green, respectively), indicated by vertical red-dashed lines in

Fig. 7(a). It is clear from the curves in Fig. 8 that the nonlin-

ear wave-particle interaction, occurred in the velocity range

�1 � vx � 1, has produced peculiar flat-top velocity profiles,

by flattening the peak of the vx proton velocity distribution.

It is worth to point out that the velocity width of the flat-top

region is nearly independent on x, as it can be deduced from

Fig. 8.

Finally, in Fig. 9, we report the velocity iso-surfaces of

the proton distribution function at t¼ 300 evaluated at the

spatial locations x0 ’ 2.5, 3.5, 8.5, 10 (top-left, top-right,

bottom-left, bottom-right, respectively). In these three-

dimensional plots it is clearly visible that the flattening

along the vx direction, produced by nonlinear effects as dis-

cussed above, makes the 3D proton velocity distributions

look like flat disks (or pancakes), almost independently on

the spatial location x0 at which the 3D plot is considered. It

is also worth noting that the ring-like modulations of the

3D velocity distributions along the vy axis (especially visi-

ble in the top-right and bottom-right panels) presumably

indicate vy resonance velocity shells. We note that in two

recent papers by Rudakov et al.,45,46 the linear and nonlin-

ear Landau resonance of KAW fluctuations and the conse-

quent evolution of the particle distribution functions have

been analyzed; in these works, it is shown how KAW turbu-

lence in the solar wind can lead to the generation of non-

Maxwellian distribution functions, with the formation of

velocity plateaus which, in turn, decrease the Landau damp-

ing rate of the fluctuations.

To conclude this section, we performed a numerical

simulation of collisional relaxation for one of the non-

Maxwellian velocity distributions of Fig. 9, in presence of

Coulomb proton-proton collisions modeled by the full

Landau integral.47–49 From this analysis, performed using

typical parameters of the solar-wind environment, we esti-

mated the characteristic time of relaxation towards a

Maxwellian for the considered velocity distribution. This

characteristic time results about 105 times larger than the

proton gyro period; this suggests that the velocity distribu-

tions produced in our simulations by resonant interaction of

protons with KAW fluctuations are stable against collisions

and thus likely to be observed in in situ measurements from

spacecraft.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed numerically the kinetic

features of the KAWs at large propagation angles, in typical

FIG. 7. x � vx level lines of the proton distribution function f calculated at

vy¼ vz¼ 0 at four different times t¼ 300, 500, 700, 1000 (from top to bot-

tom), for the nonlinear simulation with a¼ 0.25.

FIG. 8. vx profiles of the proton distribution function f calculated at

vy¼ vz¼ 0 and at four different spatial positions x0 ’ 2.5, 3.5, 8.5, 10 (red,

black, blue, and green, respectively) for the nonlinear simulation with

a¼ 0.25, at t¼ 300.
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conditions of the solar-wind environment, by employing the

kinetic hybrid Vlasov-Maxwell code24 in 1D-3 V phase

space configuration. Our kinetic simulations in nonlinear re-

gime have been guided by a preliminary analysis of the two-

fluid theory for the KAWs and by a set of linear simulations

with helped us to choose the simulation parameters, the ini-

tial condition, the numerical resolution and the form of the

initial perturbations, in such a way to focus our study on the

propagation of a monochromatic KAW.

While in linear regime the amplitude of the oscillations

undergoes collisionless Landau damping, whose effect is

larger for smaller propagation angles h, in the case of large

initial amplitude perturbations, the effects of damping is sat-

urated. Then, the wave amplitude starts oscillating around an

almost constant level with a period s, inversely proportional

to the initial perturbation amplitude. This phenomenology is

clearly reminiscent of the nonlinear saturation of Landau

damping in the electrostatic case, due to particle trapping.41

In fact, also for the case of the KAW it is possible to show

that resonant protons can be trapped by a pseudo-potential

and presumably trigger a physical process analogous to the

trapping of particles in an electrostatic potential well.

Thanks to the fact that the Eulerian HVM algorithm pro-

vides a clean noise-free description of the phase space

plasma dynamics, we pointed out how the resonant interac-

tion between KAWs and protons can give rise to significant

deformations of the proton distribution function, appearing

as phase space vortices and complicated structures. In partic-

ular, peculiar flat-top velocity profiles have been recovered

in the velocity direction parallel to the wavevector.

Moreover, the three-dimensional iso-surface plots in velocity

space have revealed that the proton velocity distribution

assumes the typical shape of a flat disk, remarkably depart-

ing from the spherical isotropic Maxwellian configuration.

Finally, the numerical simulations presented in this pa-

per suggest that when nonlinear processes of resonant wave-

particle interaction are at play, describing the entire three-

dimensional velocity domain is crucial, since it allows the

particle velocity distribution to freely model its shape, in

response to its interaction with a large amplitude wave. The

results discussed in this paper are especially relevant in the

field of space plasma physics, where the KAWs have

recently gained an important role in the study of solar-wind

turbulence dissipation and heating,9–20 at typical proton and

electron kinetic scales.
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FIG. 9. Three-dimensional iso-surface

plots of the proton velocity distribution

at four different spatial positions x0 ’
2.5, 3.5, 8.5, 10 (top-left, top-right,

bottom-left, bottom-right, respec-

tively), for the nonlinear simulation

with a¼ 0.25, at t¼ 300.
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